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Abstract. This paper introduces a little bit different view on evolvable
computational machines than it is usually presented. Evolvable machines
are considered as mathematical machines. Traditional tools of theoreti-
cal computer science are then employed in order to obtain qualitatively
new understanding the evolvable machines. In particular the questions
related to formal definition and computational power are discussed. The
concept is proposed in framework of traditional software and hardware
implementations of evolvable machines.

1 Introduction

From a machine learning perspective, genetic programming is very often consid-
ered as a technique allowing the automatic design of computational machines
[8, 1]. In the most popular approach, a program is evolved. In order to create the
computational machine, the evolved program is uploaded into a universally pro-
grammable computer and the program is executed. In another approach, referred
to as Cartesian genetic programming (CGP) [12], digital circuits are evolved di-
rectly. The resulting circuits can be considered as computational machines too.

It could theoretically be possible to evolve using genetic programming what-
ever computational machine based on an arbitrary model of computation. How-
ever only relatively simple computational machines (such as small programs [8],
circuits [11], cellular automata [15] or Turing machines [20]) were designed suc-
cessfully because of scalability problems.

Genetic programming also enables the design of adaptive computational ma-
chines. In this case, opposite to the evolutionary computational machines design,
the evolutionary algorithm is inherent part of a target (e.g. embedded) system.
The evolutionary algorithm has to autonomously produce computational ma-
chines according to requirements represented via dynamic fitness function which
reflects a changing environment. Adaptive computational machines, which utilize
the evolutionary approach, are known as evolvable (computational) machines.

Computer engineering concerns itself with implementation of a given com-
putational machine in reality (in software, hardware etc.). On the other hand
computer science usually defines theoretical models of computation for these
computational machines. It is advantageous to have such models because then
various methods might be applied to investigate machines’ properties, limits



and classes. Furthermore, computer engineers can prepare an effective design
strategy easily if suitable theoretical models exist.

This paper compares three viewpoints on computational machines designed
using evolutionary methods: a software implementation viewpoint, a hardware
implementation viewpoint and a formal approach viewpoint. While software im-
plementations are well developed in the genetic programming community and
hardware implementations are realized in the evolvable hardware community,
a formal approach seems to be quite overlooked. Hence this paper introduces
some formal definitions as a potential way in which software as well as hard-
ware implementations of evolvable machines can systematically be integrated,
studied and understood. In particular we emphasize a computational scenario of
evolvable machines that differs from conventional computational scenarios.

The approach used in this paper represents a high-level insight to the prob-
lem. The method can show what we really do in the evolutionary machine design
and how evolvable machines perform the computation. In particular it becomes
important for (semi)automatic design tools in which we are looking for a uni-
versal description suitable for specification of evolvable systems.

The paper is organized as follows. Section 2 deals with software, hardware
and formal viewpoints related to the evolutionary computational machines de-
sign. A formal definition of a dynamic environment and computational power in
dynamic environment are discussed in Section 3. Section 4 provides summary of
the obtained results. Finally conclusions are given in Section 5.

2 Evolutionary computational machines design

In case of the evolutionary computational machine design, genetic programming
is only to assist (or “replace”) the designer and thus a genetic programming
system is utilized only in the design phase. Only a single fitness function is usually
constructed. We are interested in innovative designs. The resulting machine is
much more important than the design method applied since only the resulting
machine is interesting for potential customers.

2.1 A software viewpoint

Let us recall a programmer’s perspective. In genetic programming, (variable
length) chromosomes represent either trees or machine language instructions. All
candidate programs are executed in order to obtain their fitness values. Every
new population is formed using genetic operators working over the chromosomes.
The algorithm is terminated when a perfect solution is produced or a pre-defined
number of populations are generated.

From a theoretical computer science viewpoint, tree representation can be
modeled using expressions of A-calculus. Machine language instructions directly
represent programs of the RAM (Random Access Machine) computer model [7].
Hence a target computational machine looks like a universal computer; the evo-
lutionary algorithm is only to supply a program which is uploaded into a memory
of the computer and which is executed.



In another approach, genetic programming was employed to construct cellular
automata rules. (Non-uniform) cellular automaton is a d-dimensional grid of
finite automata (known as cells) that operate according to their local transition
functions (also known as rules). The cells work synchronously—a new state of
every cell is calculated from its previous state and the previous states of cell’s
“neighbors” in each time step. Local transition functions can also be defined as
syntactic trees. These trees can be evolved using genetic programming. Koza
[8], Ferreira [6], Sipper [15] and others evolved a number of high-quality rules in
tasks where human approach has led to poor results.

The previous paragraph has demonstrated that genetic programming can be
applied to design not only a program for a universal computer, but also to design
a component of computational machine definition (i.e. cellular automata rules
in our example). Note that such a computer model (i.e. cellular automaton) dif-
fers from traditional universally programmable computers (e.g. von Neumann’s
computer organization) substantially. However the cellular automaton is typi-
cally simulated on a machine of traditional organization.

Finally, genetic programming in cooperation with a software simulator of
practically whatever behavior might be able to discover innovative designs. That
is clearly demonstrated, for instance, on the automatic design of analog circuits
using genetic programming and an analog circuit simulator [16].

2.2 A hardware viewpoint

In case of hardware we have to distinguish hardware implementations of genetic
programming and evolvable hardware.

In order to speed up the evolution, parallel genetic programming implementa-
tions (employing hundreds processors like in [16]) or hardware implementations
are constructed. As an example of conventional hardware approach, Martin im-
plemented a simple variant of parallel genetic programming in an FPGA (Field
Programmable Gate Array) [10]. The programs, which can be evolved directly
in an FPGA, consisted of a few types of instructions and were evaluated in p
small “processors” constructed and distributed inside the FPGA. We would like
to mention that Martin’s approach couldn’t be classified as evolvable hardware
because no circuits were actually evolved.

In case of evolvable hardware [23], chromosomes are considered as circuit con-
figuration bitstreams which are used to configure a reconfigurable circuit. Every
candidate configuration is evaluated either in a circuit simulator (i.e. extrinsic
evolution) or in a physical hardware (i.e. intrinsic evolution). It is crucial to dis-
tinguish these approaches. In case of so-called unconstrained evolution discovered
by A. Thompson [19] (it is intrinsic evolution too), the evolution is free to ex-
ploit physical properties of a chip as well as other environmental characteristics
(like temperature during experiment) for building the resulting circuit. Because
of the “side effects” of the unconstrained evolution, it is possible to obtain two
different fitness values (related to the same configuration) when formally the
same fitness calculation process is carried out in a software circuit simulator and
then in a physical reconfigurable circuit. Note that the software simulator and



the constrained evolution in hardware always yield the same fitness value for
the same configuration. Although unconstrained evolution causes a number of
problems in practice, it is a tool how to discover really innovative circuits [19].

Miller’s CGP is probably one of the most developed models of FPGA-based
genetic programming [12]. In CGP a reconfigurable circuit is modeled as an ar-
ray of n. (columns) X n, (rows) programmable nodes (see Fig. 1). The number
of circuit inputs n; and outputs n, are fixed. A node’s input can be connected to
the output of some element in the previous columns or to some of circuit inputs.
A node has up to n, inputs and a single output. Every node is programmed to
implement one of ny functions defined in set F'. Finally, circuit interconnectiv-
ity is defined by levels back parameter L, which determines how many previous
columns of nodes may have their outputs connected to a node in the current
column. For example, if L = 1, only neighboring columns may be connected;
if L = n,, the full connectivity is enabled. Nodes in the same column are not
allowed to be connected to each other, and any node may be either connected
or disconnected. Circuit outputs can be taken from any node output. A configu-
ration of every node is represented in a chromosome using n,, + 1 integer values,
which define connection of node’s inputs, and a function realized in the node.
While chromosomes are of fixed length, phenotypes are of variable length.

From a theoretical computer science viewpoint, Boolean circuits represent
a model of computation too. While Turing machine and RAM are examples of
uniform and infinite computer models (in sense that each particular computer
can process inputs of an arbitrary size), a single Boolean circuit computes only
a single Boolean function. In order to make a universal computer model of the
same power as Turing machines out of Boolean circuits, uniformly designed
families of Boolean circuits have to be considered [7].
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Fig.1l. Three different phenotypes with identical behavior. Parameters of CGP:
ne=3,n, =1,n; =2,n, =1,n, =2,n5 =2, F = {and, not}.

2.3 A formal viewpoint

Up to now we mentioned various models of computational process in this paper.
These models are formally defined in many textbooks, e.g. [7]. Genetic program-
ming was employed in order to design computational machines based on the
discussed models. Let us try to formalize this well-known concept.

Any evolutionary algorithm E (and thus genetic programming too) can be
considered as a stochastic population-based search algorithm. For instance, Surry



formally defines a stochastic search algorithm as recursive function ¥ which,
when given a sequence of points from the representation space and the corre-
sponding sequence of fitness function values for those points, generates a new
point in the representation space [17]. The definition assumes the existence of
genotype-phenotype mapping (sometimes referred to as a growth function) which
is important from (our) machine design viewpoint.

Classical evolutionary algorithms utilize fitness function of the form @ : C —
R where C denotes a set of chromosomes (representation space). Conceptually,
chromosomes are not evaluated. Only machines (more precisely, behaviors of
these machines) are and can be evaluated. Hence it is reasonable to define a set
of machines M which can be constructed from chromosomes for a given problem
domain using growth function g : C — M. It is supposed that g is surjective.
The machines are then evaluated using “machine” fitness function f: M — R.
Finally, @ is expressed as composition & = f o g.

In order to illustrate the proposed formal approach, assume that a definition
of cellular automaton A consists of four components A = (¢, ¢, c3, R), where
R = {0,1}" denotes cellular automaton rules encoded as n-bit string. Then a set
of all machines that can be evolved corresponds to a 2™-element set of cellular
automata of the form

M= {(0170270375’) | cr =ki,co =kg,c3 = k3}

where ki, ks, and k3 are invariable objects. Genotype-phenotype mapping is

constructed as g : {0,1}™ — M. Cellular automata are then evaluated using f.
According to the previous analysis, we can summarize that any evolutionary

design of computational machines is fully defined in terms:

E - evolutionary algorithm employed (with fitness function @ : C — R);

M — a set of possible machines which can be created;

g — a surjective growth function of the form g: C — M;

f — a “machine” fitness function of the form f: M — R;

bd=1fog

We can see that only four mathematical components (E, M, g, f) are needed
in the definition. Note that f is a problem specific function, g can cover any
type of constructional process (e.g. such as a development of phenotypes from
genotypes described and implemented initially in Dawkins’s biomorphs [5]) and
M is defined implicitly or explicitly before the evolution is executed. Looking
via the proposed definition all evolvable machines operate in the same way. We
could perhaps say that they are (iso)morphic each other in some sense. Some
other properties have been investigated in [13].

2.4 Relation of the approaches

When software, hardware and theoretical views (together with underlying mod-
els) are formulated, we can investigate their relations and mutual translatability.
However, if we accept the proposed definition as a general paradigm, we could
easily get into troubles.



Theoretically, M is infinite but enumerable set. Practically, M is always fi-
nite because of finite resources of any implementable universal computer or any
electronic circuit. If we accept that M is a finite set then software implemen-
tations can always correspond to the proposed formal model. Furthermore, all
Martin’s style hardware implementations of genetic programming always corre-
spond with the proposed formal model too.

However it is not case of evolvable hardware. There is not any problem in
the constrained evolution: the number of possible distinguishable phenotypes
(circuits) is given by the number of possible different circuit configurations. For
instance, we derived using a simple combinatorial analysis that CGP enables
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different configurations and so circuits to emerge, i.e. |M| = P. Note that the
circuits, which perform the same logical behavior, are treated as different phe-
notypes because they are not placed in physically identical nodes as seen in
Fig. 1.

Although the unconstrained approach supports P configurations too, the
number of different circuit behaviors which can appear is P’, but P’ is greater
than P. It is due “analog” nature of the evolved circuits and various side ef-
fects (like variability of material characteristics of “the same” chips or changing
temperature during evolution). Hence it is practically impossible to specify M
in this case. Hypothetically, if one would like to specify M, (s)he has to create
a detailed model for a given piece of silicon (chip), to explore all possible con-
figurations and to take in account all working conditions (so-called operational
envelope in [18]).

This problem can also be interpreted in the following way: f is not a func-
tion, but f is a relation. Hence two (or more) different fitness values might be
assigned to a single machine in the formally same fitness calculation process (see
Fig. 2CD). The situation traditionally leads in theoretical computer science to
definition of non-deterministic variant of the computational model. In our case,
we can speak about non-deterministic evolvable machines.

In practical designs of evolvable hardware, growth function g has always been
a bijection. This means that a single configuration bitstream encodes a single
physical circuit. In case of software, redundancy of encoding is sometimes in-
troduced as shown in Fig. 2BD. It yields genotype neutrality. Note that the
mappings in Fig. 2A exactly correspond with the circuits depicted in Fig. 1.

3 Evolvable machines

Evolvable machines operating in a dynamic environment (e.g. with a chang-
ing fitness function in scheduling tasks [2] or in dynamic hashing [4]) introduce
in embedded systems the following situation: Problem representation and ge-
netic operators (and architecture of a reconfigurable circuit in case of evolvable
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Fig. 2. Properties of g and f in four different types of evolvable machines.

hardware) remain unchanged and cannot be altered when a new fitness func-
tion is specified. Formally, El, M, and g are invariable. This is unpleasant from
a performance (No Free Lunch theorem [22]) point of view. Hence it is important
to define a problem domain carefully in order to outperform random search for
a reasonable class of fitness functions.

3.1 Formal approach

In order to provide a simple formal framework for machine evolution in a dy-
namic environment, the following specification of machine context (environment)
is proposed. The machine context is considered as a set of fitness functions (we
can call them contert functions) together with a mechanism of transition be-
tween them. Context functions are changed in discrete time points modeled as
natural numbers N = {1,2,...}. A set of all mappings from M into R will be
denoted RM . Formally, machine context is defined in terms:
I' CRM — a set of context functions (¢; € I specifies fitness function in envi-
ronment 7).
o € I' — an initial context function.
€:I' x N — I' — a relation that determines successive context function.

The following example illustrates the proposed formal definitions: Consider
a real-time adaptive image filtration realized using an evolvable computational
machine. The evolutionary algorithm is applied to automatically design image fil-
ters. The filters should suppress a noise presented in images taken from a camera.
The evolvable machine in fact produces a (potentially endless) sequence of filters
(i.e. machines from M), each for more recent type of noise. Assume, for instance,
that the machine is a part of a traffic control system. Type of noise is reflected
in context function ¢; and hence ¢; depends on daytime, weather and other
factors. A change of type of noise (i.e. a change of context function described by
€) is unpredictable as weather is.



3.2 Computational power

The example has demonstrated that if we put together the definition from Sec-
tion 2.3 with the definition of machine context (i.e. f = ¢;), we obtain a formal
definition of an arbitrary evolvable machine working in a dynamic environment.

It was shown in an emerging field—hypercomputation (or super-Turing com-
putation) [3, 9, 21]—that some theoretical models and modern computational
systems do not share the computational scenario of a standard Turing machine
and hence they can not be simulated on Turing machines. Let us note that
a standard Turing machine supposes that input data are available before a com-
putation is started (no interaction is enabled later) and that a uniform algorithm
(which is invariable and never changed during execution) processes them.

Nevertheless van Leeuwen and Wiedermann have shown that such computa-
tions may be realized by an interactive Turing machines with advice [9]. Interac-
tive Turing machine with advice is a classical Turing machine endowed with three
important features: advice function (it is a weaker type of oracle [7]), interaction
and infinity of operation. The same authors have proposed the following exten-
sion of the Church-Turing thesis [9]: Any (non-uniform interactive) computation
can be described in terms of interactive Turing machines with advice.

For example, a model of Internet possesses the same computational power
as an interactive Turing machine with advice. However, only in the case that
its life-span is infinite. Otherwise, the computation is finite and remains in the
scope of standard Turing machine and the standard Church-Turing thesis [9].

We can observe that evolvable computational machines operating in a dy-
namic environment show simultaneous non-uniformity of computation, interac-
tion with an environment, and infinity of operations. Furthermore, relation ¢ is
in general uncomputable. It was proven that computational power of an evolvable
computational machine operating in a dynamic environment is equivalent with
the computational power of an interactive Turing machine with advice, however,
only in the case that evolutionary algorithm is tuned to the problem [14].

Also physical implementations of evolvable machines (for instance, the evolv-
able image filter mentioned in the previous subsection), Internet and other sim-
ilar devices are very interesting from a computational viewpoint. At each time
point they have finite description. However, when one observe their computa-
tion in time, they represent infinite sequences of reactive devices computing
non-uniformly. The “evolution” of machine’s behavior is supposed to be endless.
In fact it means that they offer an example of real devices (physical implemen-
tations!) that can perform computation that no single Turing machine (without
oracle) can. Nevertheless they can be modeled a posteriori by interactive Turing
machine with advice [9].

4 Summary

We can now summarize the most important results of the paper.

— It is reasonable and useful to support various approaches in order to describe
and understand the evolvable machines.



— General formal definition of an evolvable machine can be introduced.

— One-to-one mapping exists between the formal definition, software and “con-
ventional” hardware implementations of any evolvable machine.

— If a hardware implementation of an evolvable machine is realized using the
unconstrained evolution then it is practically impossible to define set of ma-
chines M.

— The unconstrained evolution can be modeled using a non-deterministic evolv-
able machine.

— Evolvable machines operating in a dynamic environment exhibit a super-
Turing computational power.

Some open problems for future research are as follows:

— How (iso)morphism of evolvable machines should be defined.

— How classes of evolvable machines (comprising machines of the same com-
putational power) should be defined.

— How to reflect all the proposed ideas in practical design tools.

5 Conclusions

The paper presents an original contribution to the theory of evolvable machines.
We showed that theoretical computer science has methods for effective descrip-
tion of evolvable machines. Application of these methods allowed interesting
results to appear. We are going to go on in the proposed approach in future
research. The ultimate goal is (1) to establish a widely acceptable mathemati-
cal theory of evolvable computational machines and (2) to apply the results in
practical designs.
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