Image Filter Design with Evolvable Hardware

Luk4s Sekanina

Faculty of Information Technology
Brno University of Technology
Bozetéchova 2, 612 66 Brno, Czech Republic
sekanina@fit.vutbr.cz

Abstract. The paper introduces a new approach to automatic design
of image filters for a given type of noise. The approach employs evolv-
able hardware at simplified functional level and produces circuits that
outperform conventional designs. If an image is available both with and
without noise, the whole process of filter design can be done automati-
cally, without influence of a designer.

1 Introduction

Image recognition is a problem that has to be solved successfully in various
industrial applications, namely in automatic traffic sign recognition, car regis-
tration number recognition or in the automatic control of the producing line in
a factory where correct and damaged products have to be detected.

The whole recognition system has to be extremely accurate. For example,
only one wrong decision of the million is acceptable in case of recognition of the
correct/damaged component on the production line. The quality of recognition
algorithm strongly depends on quality of the images coming from a camera since
these algorithms are commonly designed for idealized images.

Images usually acquired through modern cameras may be contaminated by
a variety of noise sources (e.g. photon or on-chip electronic noise) and also by
distortions such as shading or improper illumination. Therefore, a preprocessing
unit (image filter) has to be incorporated before recognition to improve image
quality.

This paper deals with filters for smoothing images. Industry calls for au-
tomatic design of such filters since (1) the system should adapt to changing
environment autonomously (e.g. to the changes of illumination or after replace-
ment of a damaged camera) and (2) it is expensive to pay designers when no
standard solution can be easily adopted.

A new approach to automatic design of image filters for a given type of noise
is introduced. The approach employs evolvable hardware at functional level and
produces circuits that outperform conventional designs in terms of the resulting
image quality and implementation cost in most cases. We do not know any
work that is related to evolutionary design of image filters at hardware level at
the moment. Available evolutionary designs reported in past years are oriented
towards filters for one-dimensional signals or to specific image operators. Our

S. Cagnoni et al. (Eds.): EvoWorkshops 2002, LNCS 2279, pp. 255-266] 2002.
© Springer-Verlag Berlin Heidelberg 2002

256 Luk&s Sekanina

solution is based on simple functions (binary operations or 8bit adders) that
may be effectively implemented in low-cost, commercial off-the-shelf hardware
devices like FPGA (Field Programmable Gate Array).

The next section briefly summarizes conventional image filters while the ba-
sic principles of evolvable hardware are described in Section 3. Some of the
already published evolutionary approaches to filter and image operator design
are mentioned in Section 4. Section 5 introduces experimental framework of our
approach. Section 6 reports evolved designs that are discussed in Section 7. And
finally, conclusions and problems for future work are given in Section 8.

2 Conventional Design of Image Filters

The conventional approach to image filter design is explained in many textbooks,
e.g. in [IJ2]. An image can be filtered either in the frequency or in the spatial
domain. We are interested in the spatial domain where the input image x con-
volves with the filter function h. In discrete convolution, the kernel is shifted
over the image and multiplies its values with the corresponding pixel values of
the image. A kernel is a small matrix of numbers whose members define weights
of accounted pixels. Let y(i, j) denotes a pixel value of the resulting image at
position (i,). For a square kernel of size M x M, we can calculate the output
image with the following formula:

M M
2 2

y(lv.” = h(m’n)x(l —m,j— TL)

m=— n=—

m‘i
w‘g

Various standard kernels exist for specific noise, where the size and the form
of the kernel determine the characteristics of the operation. The filter can be
applied on an already filtered image repeatedly. In contrast to the frequency
domain, it is possible to implement non-linear filters in the spatial domain. In
this case, the summations in the convolution function are replaced with some
kind of non-linear operator (e.g. Median or Kuwahara filter). Another advanced
filters like non-linear mean filter or averaging using a rotating mask are given in
[172].

Let us briefly describe mean (denoted as FAl in the paper), mean-2 (FA2),
mean-4 (F'A4) and median (F'M E) filters since reported results will be compared
with them in the next sections. Consider M=3 for the paper. The idea of mean
filtering is simply to replace each pixel value in an image with the mean (average)
value of its neighbors, including itself. Mean-2 and mean-4 filters take some pixels
in account several times and produce better results than mean filter for Gaussian
noise since their coefficients are derived from the curve of Gaussian distribution.
The kernels are defined as:

111 111 121
FAl=-(111 FAQZE 121 FA4:E 242
111 111 121

Image Filter Design with Evolvable Hardware 257

In the case of median filter, a pixel value is replaced with the median of
neighboring values. A median filter is much better at preserving sharp edges
than the mean filter since it does not create the new (potentially unrealistic)
pixel values.

3 Evolvable Hardware

Evolvable hardware (EHW) may be considered as a technology, which enables
to establish an evolvable system with the ability of hardware on-line adaptation
to dynamically changing environments [3]. A circuit connection of the fast re-
configurable circuit (whose configuration bits are encoded in a chromosome) is
autonomously synthesized by an evolutionary algorithm. In the case of a sin-
gle fitness function, the approach is usually called evolutionary circuit design.
Evolution is free to explore many unconventional solutions beyond the scope
of conventional engineering design and thus should introduce a new quality to
solution. Real-world applications of EHW are summarized in [4].

Miller and Thomson have introduced Cartesian Genetic Programming (CGP)
[B] that was recently applied by several researchers especially for evolutionary
design of combinational circuits [0]14]. Reconfigurable circuit is modeled as an
array of u (columns) x v (rows) programmable elements (gates). The number
of circuit inputs and outputs is fixed. Feedback is not allowed. A gate input
can be connected to the output of some gate in the previous columns or to
some of circuit inputs. L-back parameter defines the level of connectivity and
thus reduces/extends the search space. For example if L=1, only neighboring
columns may be connected; if L=u, the full connectivity is enabled. For a given
application, designer has to define: the number of inputs and outputs, L, u, v
and a set of functions performed by programmable elements (typically binary
operations over two or three inputs). In other words, these parameters define a
configuration of the programmable circuit (see Figure [I).

The idea of EHW at functional level, where the programmable elements in-
clude functions like adders, multipliers, dividers, sine or cosine generators over
floating point numbers, was initially introduced in [7].

4 Evolutionary Filter and Image Operator Design

In the case of the spatial domain, image filters and image operators are designed
similarly. The designer usually determines M and the values of the kernel. This
is a very time consuming job, especially when the noise type is unknown. Thus
evolutionary design of either the kernel or the whole function (i.e. a circuit at
hardware level) offers an alternative approach. The resulting structure evolves
from primitives instead of calculating coefficients for a general-purpose model.
Evolved solutions (circuits) should be more efficient than conventional design in
terms of performance and implementation cost.

Authors in [8] evolved circuits for edge detection using elementary binary
operations supported in FPGAs while another edge detectors (also evolved in

258 Luk&s Sekanina

FPGA) were represented as 2D arrays of integers that defined the convolution
kernel [9]. Evolutionary optimization of soft morphological filters for archive film
restoration was extended to temporal domain in [10].

At least one paper at every conference on EHW was devoted to filter design
in history: Evolvable System: From biology to hardware conference ICES96 (1
paper), ICES98 (1), ICES00 (1), ICESO01 (1); NASA/DoD Workshops on Evolv-
able hardware 1999 (3), EH00 (1), EHO1 (3). Proposed approaches however deal
with one-dimensional signals only. Miller used pure gate array and CGP to filter
simple signals [II]. In [I2] the authors implemented a simple filter as well as
whole evolutionary algorithm in the FPGA. Genetic programming approach to
analog filter design is explained in detail in [T3]. In [T4] the authors used CGP for
the design of finite impulse response digital filters with reduced power consump-
tion. Resulting design is automatically transformed to VHDL and synthesized.
The filter evolves from primitives like adder, subtractor or shifters.

5 Image Filter Evolution: Experimental Framework

The goal is to evolve a digital circuit operating as an image filter for a given
type of noise. Gray-scale (8bits/pixel) images of size N x N (N=256) pixels are
considered in the paper. The pixel value is filtered using 3 x 3 neighborhood.
The new pixel value is available on the 8bit output of the circuit. The circuit
input consists of nine pixel values. Based on initial experiments, the following
parameters were set up as default:

Oiginal imge [Reconfigurable circuit \ Filtered i mage
10
> | | | |
Il: I
12 | | | |
> T I Tr
|5> t =r‘| |
14 R R e
- | | | |
|8> 1l - _L
|L 1 1 1 1
14
13 Z

(Configuration input ~ < Y,

Chr omosoned .-
0] 1121 2|5/ 14 4]8|17 76|26 9] 11|21 10| 11| 14| xxx 12|

3| 14 xx® 13| 16| 21 14| 16|21 xxx
XXX XXX XXX 181191 21 XXX XXX XXX XXX 24 - -

Fig. 1. An example of the reconfigurable circuit and its configuration for the image
filter. Nine inputs (pixel values) are used to calculate a new (filtered) pixel value.
Parameters: 9 inputs, 1 output, circuit topology 5x4, L-back=1. Only utilized pro-
grammable elements are marked.

Image Filter Design with Evolvable Hardware 259

5.1 Reconfigurable Circuit

Parameters of the reconfigurable circuit according to CGP are: 9 inputs (8bits),
1 output (8bits), u = 10 (columns), v = 4 (row), L-back = 2. A programmable
element has two inputs and operates over 8 bits. Table[T]lists functions supported
in the programmable element. Circuit inputs correspond with the pixels of the
kernel according to the Figure[dl. The proposed architecture operates rather like
parallel gate level evolution than functional level evolution. In the case of adders
(functions 14, 20, 21 and 30), only lower 8bits are considered as output. Except
the adders, the elements have trivial hardware implementation.

Table 1. A list of functions implemented in a programmable element. The inputs a
and b and the outputs operate over 8bits. Symbols used: >> right shifter, << left
shifter, A binary AND, V binary OR, & binary exclusive-OR, + 8bit adder, a is a
binary negation of a. Constants are given in a hexadecimal system.

0 a>>1 1 a>>2 2 a>>4

3 a 4 a<<l1 5 a << 2

6 a<<4 Tl(a<<4)V(a>>4)|8 0

10 FF 11 AA 12 55

13 33 14] (a+b+1)>>1 |15 aVvb

16 alb 17| (a AOF) V (b A F0) |18|(a A CC) V (b A 33)
19|(a A AA) V (b A 55)|20 a+b 21| (a+b)>>1
22 aVvb 23 anb 24 anb

25 anb 26 a®b 27 aVvb

28 a®b 29 aVvb 30| ((a+b) >>1)+1

5.2 An Evolutionary Algorithm

Chromosome encoding: A chromosome is a fixed-size string of integers, con-
taining u x v genes (corresponding to the programmable elements in the recon-
figurable circuit) and one place devoted to the index of the element representing
the circuit output (see a chromosome in Figure[I)). A gene is described by three
values: the position of the first input, the position of the second input and a
number of the function applied on inputs. Thus genotype is of fixed length while
phenotype is variable length since all the programmable elements need not be
used.

Population: Population size is 16. Initial population is generated randomly, but
only the function 21 was used in some runs (see Section 7). The evolution was
typically stopped (1) when no improvement of the best fitness value occurs in
the last 50000 generations, or (2) after 500000 generations.

Genetic operators: Mutation of two randomly selected gates is applied per
circuit. A mutation always produces a correct circuit configuration. Crossover is
not used. Four of the best individuals are utilized as parents and their mutated
versions build up the new population (deterministic selection with elitism).

260 Luk&s Sekanina

Fitness function: Various approaches exist to measure image visual quality.
The signal-to-noise ratio or the pure average difference per pizel (dpp) are the
commonest ones. We chose the second approach. Let orig denote an original
image without any noise (e.g. Lena), noise denotes the original image corrupted
with noise of type Xz (e.g. LenaXxx), and filtered denotes an image filtered
using some filter Fyy (e.g. lenaXxxFyy). The filter is trained using Lena256 and
Lena256Xxx images for Xxx noise. Only the area of 254 x 254 pixels is filtered
because the pixel values at the borders are ignored. To obtain the fitness value,
the differences between pixels of the filtered and original image are added and
the sum is subtracted from a maximum value (representing the worst possible
difference: #grey_levels x #pixels):

N—2N-2
FitnessValue = 255.(lorig(i,7) — filtered(i, 7)|
=1 j5=1

<.

6 Results

For our experiments, we consider three types of noise denoted as: G16 (Gaussian
with a mean of zero and a standard deviation of 16), R32 (uniform random with
parameter 32) and N1 (block uniform random). Images with G16 and R32 noise
were generated from originals using Adobe Photoshop program. We designed the
N1 noise for testing purposes to model random defects in the image. N1 noise
is generated as R32 noise but applied only for randomly selected blocks of the
image. The rest of the image preserves.

We have evolved more than one hundred image filters and 20 of them are
presented. The test set contains the following images: Lena (popular for testing),
Man (a man), Bld (a building), Cpt (a capacitor), and Rel (a relay). Cpt and Rel
images were acquired through a camera and the system for automatic recognition
of damaged/correct product on the production line. The best designs as well as
results of traditional filters (typed as bold) are sorted according to their ability to
remove general noise in Table[2. The ranks for a given type of noise are presented
in the last three columns. As an example, the complete results for G16 noise are
given in Table [3

It was detected after analysis of the evolved designs that some filters do not
employ all the functional elements effectively. For instance, the filter F20 uses
two functional elements with the same inputs (marked elements in the Figure [3).
These functional elements can be omitted (i.e. replaced by a direct connection)
since they do not influence the output of the filter. The number of functions used
in the evolved designs after manual optimization is listed in the column #O of
the Table 2L

Image Filter Design with Evolvable Hardware

261

Table 2. A list of evolved and conventional filters sorted according to their ability to
filter general noise. Columns have these purposes: TN F' — trained for noise (or tested
for noise for conventional filters); dpp — dpp for trained image; u X v — circuit topology;
L — L-back parameter; #E — the number of functional elements used in the evolved
design; functionsused in the evolved designs; #O — the number of functional elements
used after manual optimization; gener — the generation where the solution occured;
G116, R32, N1 — the final rank for a given noise type and all the test images.

Filter [TEN| dpp [u x v|L |#E functions used #0| gener |G16|R32|N1
F24 |G16(6.362| 10x4 | 2|21 |8, 17, 22, 21(12), 14(6) | 14 [185168| 1 2|3
F20 |G16(6.358| 10x4 |2 |17 17, 21(14), 30(2) 15179369 | 2 | 3 |7
F26 |G16(6.358| 10x4 | 2| 19 |17, 18(2), 21(12), 14(4) | 14 | 24853 | 4 | 4 |8
F25 |G16(6.356| 10x4 | 2 | 24 21(16), 14(8) 22134151 6 | 6 |5
F21 |G16(6.354|20x2 | 4| 19 21(17), 30(2) 18 [133224| 7 1 |12
F14 |G16(6.401] 20x2 | 4| 14 | 17, 18, 21(9), 23, 30(2) | 12 | 13678 | 3 | 16 | 4
F24A | G16 |6.388] 10x4 | 2 | 14 21(14) 14 5 112 |6
F11 |G16(6.354| 10x4 | 2 | 26 21(19), 22, 30(6) 24181532 | 8 | 5 |10
FA4 | G16|6.437 9 |14 |2
F23 N1 [6.060| 40x1 [40| 10 18, 21(9) 9 (42772 13 |18 | 1
F15 | G16(6.363| 40x1 40| 18 21(18) 18 | 51356 | 10 | 11 |13
F21A | G16(6.384| 20x2 | 4 | 19 21(18) 18 11| 8 |17
F13 |G16(6.360| 20x2 | 4 | 22 21(16), 22, 30(5) 2143749 |14 | 7 |15
F16 |G16(6.367| 40x1 |40| 16 21(16) 16 | 71518 | 12| 9 |16
Fé6 G16 (6.400| 50x1 [50| 17 {17,21(10),22,24,29,30(3)| 16 | 24693 | 15 | 17 |11
F18 N1 [6.077] 40x1 40| 9 21(9) 9 (141744 16 | 19 | 9
F27 |R32(6.926| 10x4 | 2| 25 18, 21(10), 14(14) 23 |128025| 18 | 10 |19
F17 |R32(6.977| 40x1 (40| 14 2, 20, 21(12) 14 | 43549 | 17 | 13 |18
F19 |R32(6.981| 40x1 |40| 16 10, 17(3), 21(12) 16 [38007 | 19 | 15 (20
F8 G16 |6.640| 50x1 50| 12 7,17, 21(9), 30 12170304 | 20 | 21 |14
FA2 | G16 (6.469 21 | 20 |22
F22 N1 [6.283] 40x1 40| 7 21(7) 7 | 35872 22 | 23 |21
FA1 | G16(6.655 23122 |24
FME| G16 |7.157 24 | 24 |23

15

11

10

17

14

Fig. 2. The best filter evolved for the G16 noise. F24 (with topology 10x4, L-back=2)
employs after optimization only functions 21 and 14.

262 Luk&s Sekanina

Table 3. Columns 2-6 report dpp for a given filter and image with G16 noise. Total —
dpp is an average of dpp for all the test images. The last column shows the standard
deviation calculated using the best known dpp value (typed as bold) for a given image.

Filter |LenaG16|CptG16|RelG16|{ManG16|BldG16|Total-dpp|Std. deviation
no filter| 12.857 | 12.754 | 11.994 | 12.860 | 12.526 | 12.598 6.081
F24 6.362 6.046 | 4.930 | 8.243 7.763 6.669 0.082
F20 6.358 | 6.038 | 4.879 | 8.324 | 7.919 6.704 0.141
F14 6.401 | 6.109 | 4.998 | 8.256 | 7.762 6.705 0.115
F26 6.358 6.045 | 4.879 | 8.327 | 7.921 6.706 0.143
F24A 6.388 6.125 | 4.951 | 8.302 7.771 6.707 0.111
F25 6.356 | 6.065 | 4.913 | 8.310 | 7.893 6.707 0.135
F21 6.354 | 6.039 | 4.848 | 8.351 7.950 6.708 0.156
F11 6.354 | 6.058 | 4.877 | 8.356 | 7.914 6.712 0.146
FA4 6.437 6.094 | 4.981 | 8.196 | 7.875 6.717 0.140
F15 6.363 6.090 | 4.889 | 8.357 | 7.885 6.717 0.140
F21A 6.384 | 6.103 | 4.872 | 8.408 | 7.833 6.720 0.137
F16 6.367 | 6.084 | 4.876 | 8.372 | 7.915 6.723 0.152
F23 6.446 6.166 | 5.050 | 8.243 7.763 6.734 0.146
F13 6.360 | 6.073 | 4.879 | 8.376 | 7.985 6.735 0.179
F6 6.400 | 6.148 | 4.983 | 8.260 | 7.937 6.746 0.169
F18 6.438 | 6.171 | 5.023 | 8.277 | 7.958 6.773 0.192
F17 6.410 | 6.197 | 4.804 | 8.460 | 8.021 6.778 0.223
F27 6.411 | 6.023 | 4.882 | 8.475 8.143 6.787 0.261
F19 6.388 | 6.052 | 4.859 | 8.461 | 8.215 6.795 0.285
F8 6.640 | 6.328 | 5.158 | 8.511 | 7.640 | 6.855 0.283
FA2 6.469 | 6.105 | 4.856 | 8.516 | 8.414 6.872 0.381
F22 6.711 | 6.477 | 5.396 | 8.556 | 7.748 6.978 0.406
FA1 6.655 | 6.270 | 4.858 | 9.054 | 9.022 7.172 0.748
FME 7.157 | 6.837 | 5.820 | 9.160 | 8.042 7.403 0.828

Fig. 3. Evolved filter F20 (with topology 10x4, L-back=2) employs only functions
17, 21 and 30. Marked functions may be omitted.

Image Filter Design with Evolvable Hardware 263

7 Discussion

7.1 Performance

Evolved filters are compared with conventional approaches in this section. How-
ever, we know the type of noise a priori and thus efficient conventional solutions
may be prepared for comparison. It is not a case of real world situation, where
we may not know anything about the noise and suitable conventional solution
may not exist at all. Experiments performed with EHW at simplified functional
level allowed us to predict that it is possible to evolve:

1. a filter that exhibits less dpp than conventional filters (like mean filters or
median) for each given training image (without exceptions!), and

2. a filter that exhibits in average less dpp than conventional filters for a given
noise and test images (e.g. F'24 for G16 noise, F21 for R32 noise or F'23 for
N1 noise).

The result (1) is important especially for a production line where an image
recognition system operates with very similar images corrupted by the same
noise. Then the evolution leads to very efficient filters since they are not trained
only for a given noise, but also for a given class of images (e.g. only capacitors).
On the other hand, the result (2) proves generality of the evolved filters.

The filter F'24 (Figure[2) ranked among the best known filters independently
of the noise type in the image. It seems to be very general image filter and
may probably be considered as a first solution pattern when the type of noise is
unknown a priori. It consists only of 14 functions after manual optimization but
evolution needed 21 functions to ensure the same behavior.

7.2 Hardware Requirements

Successful evolution requires adders, i.e. the function 21 at least. The approach
does not work without adders as well. The function 21 is an 8bit adder equipped
with a right shifter to simulate “average of two” operator. Another improvement
is due the functions 30 (”average of two plus one”) and 14 (average of two with
a carry”). We have manually replaced all the “average of two plus one” in the
filter F21 and all the “average of two with a carry” functions in the F'24 filter by
“average of two” function to establish the filters F21A and F24A with uniform
(and so cheaper) implementations than F21 and F24. The dpp of the filters
F21A and F24A increased about 0.5-2% according to type of noise. But the
resulting filter F'24A still exhibits better results than any of the conventional
filters. If the initial population consists of the gates with the function 21 only,
faster convergence occurs. The reason is evident: evolved filters are based on this
function.

Evolved filters are compared with conventional F A4 filter that ranked as the
best of conventional filters in the Table[2l The F A4 filter with tree architecture
requires four 8bit adders, two 9bit adders, one 11b adder, one 12b adder and four
shifters. A cost of hardware implementation of some evolved filters (e.g. F'23,

264 Luk&s Sekanina

F14, F22, F18) is evidently cheaper than for F'A4 filter. As far the F23 filter
produces the best dpp for the N1 noise and, furthermore, its implementation
(nine 8bit adders and one logical operation) is cheaper than implementation of
F A4 filter, the F'23 outperforms conventional design totally. A cost of the cheap-
est circuit implementations of the filters for G16 and R32 noise are comparable
with a cost of F'A4 filter. Optimized F'14 filter for G16 noise requires at least
eleven 8bit adders and a simple logical function 17 while the F24 A filter for R32
noise consists of 14 adders. These preliminary considerations about hardware
cost will be followed by detailed analysis in future work.

As claimed in some papers (e.g. [6]), a sufficient number of the gates is
important for efficient evolution. We have applied 40 gates for different topologies
(40x1, 20x2 and 10x4) and L-back parameters with similar results, but the dpp
was significantly worse for 20x1 gates.

7.3 Experiments with the Simulation Model

The fitness calculation is very time consuming since a circuit simulator has to
calculate (N — 2)? pixel values. Two approaches were applied to speed up the
fitness evaluation: (1) if deterministic selection is used, about 42% of fitness eval-
uations need not be finished because the fitness value reached after calculation
of some number of pixels is worse than the worst already known solution needed
for selection. (2) As far the functional element operates over 8 bits and unsigned
int type occupies 32 bits, four independent pixels can be simulated in the circuit
simulator concurrently.

Some experiments did not lead to efficient designs: (1) When we use four
training images in the fitness function, only an average filter '8 has been evolved.
(2) If programmable elements of the reconfigurable circuit operate on four or two
bits, the dpp is more than 20% higher than for the filters operating on 8bits. (3)
If a small training image (32 x 32 and 62 x 62 pixels were tested) is considered
for fitness calculation, very efficient filter for a given image is evolved. However
the filter fails for another images since it is not general. The optimal size of the
training image is a question for future research.

It is also interesting that the best filters for R32 noise were evolved using
training image with G16 noise while the best solutions for G16 (and N1) noise
were evolved using training images with G16 (N1) noise.

7.4 The Evolvable Component for Image Pre-processing

It seems that the proposed approach can be useful also for other problems of
image pre-processing like removal of other types of noise, edge detection, illu-
mination enhancement or image restoration. That is also the reason why all the
functions are still supported in the programmable element although many of
them have not been used. These “useless” functions for image filters may be
important e.g. for edge detection. The goal is to develop the evolvable compo-
nent [15] for image pre-processing (with fixed architecture of the reconfigurable

Image Filter Design with Evolvable Hardware 265

circuit and genetic operators) that should be reused in future designs only by
redefinition of the fitness function.

8 Conclusions

In this paper, we experimentally proved that efficient circuit implementations
of image filters can be evolved. It was shown for three different types of noise.
Evolved filters outperform conventional designs in terms of average difference per
pixel. Implementation cost is similar or better than in conventional approaches.
It is important that evolved filters are built only from simple primitives like
logical functions or 8bit adders that are suitable for hardware implementation.
If an image is available both with and without a noise, the whole process of filter
design can be done automatically and remotely, without influence of a designer.
We plan these possible applications of evolved digital filters at the moment:

— The best-evolved filters will be translated to VHDL, synthesized and stored
in a library to be reused instead of conventional filters for a given noise type.

— A new filter will be evolved for a given situation in an industrial application
(e.g. for a given camera placed on a production line, which defines certain
type of noise that should be removed). In a case of the changes of working
conditions, the evolution will be restarted manually to find a better filter.
Suitable reconfigurable system for an evolutionary design of image filters will
be based on the Virtex Xilinx platform or implemented using the technique
proposed in [16].

Acknowledgment

The research was performed with the Grant Agency of the Czech Republic under
No. 102/01/1531 Formal approach in digital circuit diagnostic — testable design
verification. The author would like to acknowledge Dr. Jim Tgrresen for con-
tinuous support during his work with Department of Informatics, University of
Oslo, funded by The Research Council of Norway. The author would like to
acknowledge Dr. Otto Fucik for inspiration too.

References

1. Sonka, M., Hlav4¢, V., Boyle R.: Image Processing, Analysis and Machine Vision.
Chapman & Hall, University Press, Cambridge (1993)

2. Russ, J., C.: The Image Processing Handbook (third edition). CRC Press LLC
(1999)

3. Sanchez, E., Tomassini, M. (Eds.): Towards Evolvable Hardware: The Evolutionary
Engineering Approach. LNCS 1062, Springer-Verlag, Berlin (1996)

4. Tgrresen, J.: Possibilities and Limitations of Applying Evolvable Hardware to Real-
World Applications. In: Proc. of the Field Programmable Logic and Applications
FPL2000, LNCS 1896, Springer-Verlag, Berlin (2000) 230-239

266

10.

11.

12.

13.

14.

15.

16.

Luk&s Sekanina

Miller, J., Thomson, P.: Cartesian Genetic Programming. In: Proc. of the Genetic
Programming FEuropean Conference EuroGP 2000, LNCS 1802, Springer-Verlag,
Berlin (2000) 121-132

Miller, J., Job, D., Vassilev, V.: Principles in the Evolutionary Design of Digital
Circuits — Part I. In: Genetic Programming and Evolvable Machines, Vol. 1(1),
Kluwer Academic Publisher (2000) 8-35

Murakawa, M. et al.: Evolvable Hardware at Function Level. In: Proc. of the Par-
allel Problem Solving from Nature PPSN IV, LNCS 1141, Springer-Verlag Berlin
(1996) 62-72

Hollingworth, G., Tyrrell, A., Smith S.: Simulation of Evolvable Hardware to Solve
Low Level Image Processing Tasks. In: Proc. of the Evolutionary Image Analysis,
Signal Processing and Telecommunications Workshop EvolASP’99, LNCS 1596
Springer-Verlag, Berlin (1999) 46-58

Dumoulin, J. et al.: Special Purpose Image Convolution with Evolvable Hardware.
In: Proc. of the EvolASP 2000 Workshop, Real-World Applications of Evolutionary
Computing, LNCS 1803, Springer-Verlag, Berlin (2000) 1-11

Harvey. N, Marshall, S.: GA Optimization of Spatio-Temporal Gray-Scale Soft
Morphological Filters with Applications in Archive Film Restoration. In: Proc.
of the Evolutionary Image Analysis, Signal Processing and Telecommunications
Workshop EvoIASP’99, LNCS 1596 Springer-Verlag, Berlin (1999) 31-45

Miller, J.: Evolution of Digital Filters Using a Gate Array Model. In: Proc. of the
Evolutionary Image Analysis, Signal Processing and Telecommunications Work-
shop EvoIASP’99, LNCS 1596 Springer-Verlag, Berlin (1999) 17-30

Tufte, G., Haddow, P.: Evolving an Adaptive Digital Filter. In: Proc of the Sec-
ond NASA /DoD Workshop on Evolvable Hardware, IEEE Computer Society, Los
Alamitos (2000) 143-150

Koza, J. et al.: Genetic Programming III : Darwinian Invention and Problem Solv-
ing. Morgan Kaufmann Publishers (1999)

Erba, M. et al.: An Evolutionary Approach to Automatic Generation of VHDL
Code for Low-Power Digital Filters. In: Proc. of the Genetic Programming Euro-
pean Conference EuroGP 2001, LNCS 2038, Springer-Verlag, Berlin (2001) 36-50
Sekanina, L., Sllame, A.: Toward Uniform Approach to Design of Evolvable Hard-
ware Based Systems. In: Proc. of the Field Programmable Logic And Applications
FPL 2000, LNCS 1896, Springer-Verlag, Berlin (2000) 814-817

Sekanina, L., Ruzicka, R.: Design of the Special Fast Reconfigurable Chip Using
Common FPGA. In: Proc. of the Design and Diagnostic of Electronic Circuits and
Systems IEEE DDECS’2000, Polygrafia SAF Bratislava, Slovakia (2000) 161-168

	1 Introduction
	2 Conventional Design of Image Filters
	3 Evolvable Hardware
	4 Evolutionary Filter and Image Operator Design
	5 Image Filter Evolution: Experimental Framework
	5.1 Reconfigurable Circuit
	5.2 An Evolutionary Algorithm

	6 Results
	7 Discussion
	7.1 Performance
	7.2 Hardware Requirements
	7.3 Experiments with the Simulation Model
	7.4 The Evolvable Component for Image Pre-processing

	8 Conclusions
	References

