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Abstract
This paper proposes a new module selection algorithm for high-level synthesis. The algorithm uses an evolutionary
approach to find the modules configuration set that satisfies design timing constraints while minimizing the total design
cost (area). The algorithm has been incorporated in a well-characterized design space exploration strategy that aims to
help designers to systematically find efficient implementation(s) of their designs that meet the design constraints [1].
Incorporating module selection axis to the design space enable designers to evaluate large number of design
alternatives by varying module selection and the latency or the resources required to implement the given design. We
also present some experimental results for standard benchmarks to show the effectiveness of the algorithm.
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1. Introduction

The role of high-level synthesis (HLS) during the hardware-software codesign process is needed in order to allow
designers to quickly explore different implementations to the system under design, see the cost and performance figures
of the synthesized modules in terms of area, time, power, testabili ty and money. HLS is the design task of mapping an
abstract behavioral description of a digital system onto a register-transfer-level (RTL) design to implement that
behavior. By using HLS tools in the current state-of-the-art CAD flow systems the designers are allowed to explore the
design space more efficiently.
Given that the main design decisions such as the number of hardware resources, clock cycle time, and implementation
styles (pipeline, multi-cycle operation, etc.) are made during the scheduling phase, the scheduling step is considered as
the most important step in the whole HLS process. In addition, these decisions have strong influences on the following
data-path allocation and binding subtasks. For that reason, scheduling directly controls the throughput rate of the
produced RTL design and determines the cost-speed tradeoffs of the given design. Thus, the process of exploring the
design space must include scheduling phase as one of its main characterization lines, or the exploration process can be
viewed (diminished) as solving the scheduling problem. In such a way we can view the solution of the scheduling
problem as the process of exploring a 2-dimensional (2D) design space, with one axis representing time (schedule
length), and the other representing the area of the design (ideally total design area, but often simplified to functional
unit area). Adding other characterization lines such as module selection and pipelining as main features to the design
space exploration process enable designers to get high performance design implementations.
Pipelining can be classified to structural pipelining and to functional pipelining. Structural pipelining assured by using
pipelined functional units during the scheduling phase to implement some operations in the produced schedule, while
functional pipelining means subdividing the algorithm description into sequences of operation stages that will be
performed concurrently. Including pipelining axis into the design space exploration methodology allows designers
produce high performance designs.
Module selection is the problem of choosing a particular functional unit from a library of components for each operation
in the given initial schedule. The component library contains different alternative implementations for each resource
type, which are characterized by different area and delay estimates. Incorporating module selection axis to the design
space enables designers to evaluate large number of design alternatives by varying module selection and the latency or
the resources required to implement the given design.
This paper proposes a new module selection algorithm for high-level synthesis. The algorithm uses an evolutionary
approach to find the modules configuration set that satisfies design timing constraints while minimizing the total design
cost (area). However, we mean by the term modules configuration set the complete set of modules that are selected
from the components library (CL) to implement the design schedule such that it satisfies the total design specified
latency. This set may include none or many instances of the same module that exists in the CL.
The algorithm has been incorporated in a well-characterized design space exploration strategy that aims to help
designers to systematically find efficient implementation(s) of their designs that meet the design constraints [1]. We
also present some experimental results for standard benchmarks to show the effectiveness of the algorithm While our
well-characterized design space exploration methodology incorporates scheduling, module selection and structural
pipelining only for the time being, we are currently working to include functional pipelining feature into the proposed
methodology [1].



The paper is organized as follows: Section 2 reviews related research. Section 3 describes the proposed algorithm.
Section 4 ill ustrates the Experimental results. Finally, concluding remarks are given in Section 5.

2. Previous Work

During the design space exploration process, designers seek to find one or more “optimized” implementation(s) for a
given behavioral specification. In this paper, we consider the design area estimated through the cost of functional units
only, and performance of the final design measured as the total latency of the produced schedule.
MOSP algorithm [8], provided a solution to the more restricted form of module selection problem wherein all instances
of the same operation type are implemented using the same module type. Even though MOSP initially starts with a
multiple implementation library, the final design implementation is inefficient since it contains only single
implementation for each operation type.
MSSR algorithm [7], attempts to solve the scheduling, resource sharing and module selection at the same time. The
algorithm is based on iterative improvement and structured in three procedures. The procedure OPSL, which is the third
procedure in the algorithm structure, is based on the longest path algorithm. The procedure OPSL is used to select
appropriate resources from the associated library to be mapped to each hyperedge. While the MSSR solves the
scheduling, resource sharing and module selection iteratively, our module selection algorithm selects proper modules
configuration set to the initial schedule that produced by list-based scheduler in which resource sharing and the use of
pipelined functional units is already ensured.
Bakshi in [9] [10] proposed a component selection algorithm combined with pipelining and scheduling process to
characterize the design space exploration. The mentioned component selection algorithm uses a heuristic approach to
create component substitution lists to guide the greedy approach being used to solve the module selection problem,
whereas our methodology uses an evolutionary based approach.
Timmer in [3] proposed module selection algorithm and scheduling using unrestricted libraries. The algorithm starts by
initial module selection, and then a list scheduler tries to meet the time constraints with this selection. If the scheduler
does not succeed, the module selection has to be reviewed until a correct selection has been made. The algorithm
formulates the module selection problem using MILP formulation and iterates the module selection process before
finding the satisfactory schedule, which is a very time consuming process. The algorithm also constrains the number of
states or the number of modules. Unlike Timmer algorithm, our module selection algorithm finds the modules
configuration set that satisfies design time to the given optimized schedule, we don not need to repeat the given
schedule, we may need to repeat module selection process only if the components library is updated.
The algorithm presented in [11] combines module selection with pipelining, but the algorithm does not support the use
of pipelined components and the algorithm uses integer linear programming formulation (ILP) that requires exponential
execution time, as well as it selects only one candidate module to implement all operations of the same type.
Chantana in [4] reported a module selection and scheduling algorithm. While in that work they presented a module
selection algorithm based on fuzzy logic theory, but their algorithm selects only one candidate module to implement all
operations from the same selected module type, which in turn will produce inefficient design.
Ahmed in [6], integrated scheduling, allocation and module selection in the design space exploration process using a
problem-space genetic approach (PSGA). Genetic algorithms are global probabili stic search techniques that start from
an initial population of generated potential solutions to a problem, and gradually evolve towards better solutions
through a repetitive application of genetic operators like (crossover and mutation). In PSGA approach, each
chromosome in the initial population consists of two parts: priorities of nodes, and type of functional units and number
of functional units of each version. The priority of each node in the first chromosome is determined by the maximum
number of successors on the critical path of that node [6]. Whereas in our case we are applying the evolutionary
algorithm only to find the efficient modules configuration set to the given schedule, which was produced by a list-based
scheduler that incorporates the mobili ty and underlying DFG structure in the scheduler priority function in order to
produce a well-organized schedules [2]. In addition, the approach incorporates simple priority function in the same
chromosome that will l ead to inefficient schedules; hence, it will affect the module selection process as well .

3. The proposed algorithm overview

In this section, we intend to describe the evolutionary based module selection algorithm. The algorithm starts by
reading the following inputs: (1) the initial schedule that satisfies design area constraints produced from the list-based
scheduler described in [2]; (2) the required design completion time (design total latency) for the final design; and (3)
CL, which is used by the module selection algorithm to find the best modules configuration set that satisfies design
timing with a minimum design cost. A sample of CL that is adopted from [10] is shown in Table 1.
Evolutionary algorithms were successfully applied to optimization [13] and design [14] in recent years. It is also known
from those references that the evolutionary algorithm does not guarantee that the optimal solution is reached in every
run. Furthermore, No Free Lunch theorems claim that the average performance of an evolutionary algorithm and
random search across all possible problems is identical [15]. On the other hand, if the problem domain is ingeniously
captured in the algorithm then the algorithm can outperform traditional solutions [15] [16]. The main goal of our
evolutionary based module selection algorithm is to optimize the design area (estimated only by the functional units
areas) while satisfying the design specified total latency. In another words, for every design point (initial schedule),



which is supplied as an input, there are many modules configuration sets each for every individual design total latency
value and the goal of the evolutionary algorithm is to find the set that leads to the minimum design area. An example of
fifth order elliptic filter (EWF) [12] initial schedule with two multipliers and two adders as a resource set is illustrated
in Table 2. It is clear from the table that operations are still not mapped to their final modules that will execute them.
Moreover, we need to mention that the term resource set which appear in the paper context and the note resource set as
(+2, *3), which appear in figures 3 through 6 and Tables 5 and 6, means: the maximum allowable number of adders and
multipliers for each c-step for the given schedule is 2 adders and 3 multipliers. This in turn, will help the designers in
the case of modifying the design final schedule by applying resource sharing.

Problem representation
The initial schedule supplied as an input to the algorithm is represented as a sequence of integers. For instance, Table 2
describes an initial schedule for the EWF with a resource set of two adders and two multipliers. The chromosome
representation of the same schedule is il lustrated in Table 3 where: (0 denotes a *, 1 is an +, 2 is a -, 3 is a <>) and SEP
is a separator of the schedule c-steps (e.g. SEP = -1).
The type of a component is given by its position in the string implicitly. A variant of the component is given by a
number (allele of the gene) in the chromosome at a given position. The fastest component is always represented as 0.
Thus, the number of variants of a given component defines a set of legal values of a given gene. The representation of
the problem is natural, but more variants of a component than it is required may appear in the final schedule.

 

Table 3 
Design representation of the initi al 
schedule (input to evol . A lgorithm) 

c-step       
1 1 1 SEP   
2 1 SEP    
3 1 SEP    
4 1 SEP    
5 0 0 SEP   
6 1 1 SEP   
7 1 1 SEP   
8 1 0 0 SEP  
9 1 1 SEP   
10 1 1 SEP   
11 1 1 SEP   
12 1 0 1 0 SEP 
13 0 1 0 1 SEP 
14 1 1 SEP   
15 1 1 SEP   
16 1 1 SEP SEP  

 

Table 2 
Initi al schedule 

c-step     
1 + +   
2 +    
3 +    
4 +    
5 *  *    
6 + +   
7 + +   
8 + *  *   
9 + +   
10 + +   
11 + +   
12 + *  + *  
13 *  + *  + 
14 + +   
15 + +   
16 + +   

 

Table 1 
components library CL  

I
D 

Comp. 
Name 

Cost 
gates 

Delay 
(ns) 

*  M py8 4500 21  
*  M py7 4000 23  
*  M py6 3500 25  
*  M py5 2900 29  
*  M py4 2700 33  
*  M py3 2600 36  
*  M py2 2400 44  
*  M py1 2300 58  
+ Add6 500 3  
+ Add5 400 6  
+ Add4 250 10 
+ Add3 200 14 
+ Add2 100 20 
+ Add1 50 26 
- Sub6 500 3  
- Sub5 400 6  
- Sub4 250 10 
- Sub3 200 14 
- Sub2 100 20 
- Sub1 50 26 
 

Table 4 
Final schedule  

1 A dd1 A dd2   
2 A dd4    
3 A dd4    
4 A dd1    
5 M py1 M py1   
6 A dd2 A dd1   
7 A dd1 A dd1   
8 A dd4 M py1 M py1  
9 A dd2 A dd2   
10 A dd1 A dd1   
11 A dd1 A dd2   
12 A dd1 M py1 A dd2 M py1 
13 M py1 A dd1 M py1 A dd1 
14 A dd3 A dd1   
15 A dd2 A dd2   
16 A dd1 A dd2   
 

Latency=500ns?  

Evolutionary 
Algorithm 

Figure (1 ): Evolutionary algorithm design representation 

Parameters of the evolutionary algorithm
One-point crossover is applied with probabilit y pc = 60%. Two randomly selected genes are mutated per chromosome if
crossover is not used. Both two operators produce correct circuits according to the schedule. Tournament selection with
base 2 and eliti sm are employed. Initial population is generated either from the fastest variants or the slowest variants or
from a combination (50:50) of the fastest and the slowest one. We have found from the experiments that (50:50)
combination yields better convergence than if we start from the fastest combination or from the slowest one.

Fitness function
The fitness function assigns higher values to chromosomes that exhibit latency (L) equal to the required latency (RL)
and that minimize the number of gates (G) needed for implementation.



FitnessValue= 1                if L > RL;
     =BEST_FITNESS - G - |L - RL| * 5  otherwise;

where BEST_FITNESS is a suff iciently high value.

Design latency calculation
Latency L is calculated as a sum of latencies Li of the slowest components in each schedule c-step used in the
chromosome, Which means the component that has the maximum delay (the slowest) value represents the delay of the
corresponding c-step in the schedule.

where n is the number of schedule c-steps.

For instance the latency of the design example given in Table
4, calculated as follows: (L(Add1)+ L(Add4)+ L(Add4)+
L(Add1)+ L(Mpy1)+ L(Add1)+ L(Add1)+ L(Mpy1)+
L(Add2)+ L(Add1)+ L(Add1)+ L(Mpy1)+ L(Mpy1)+
L(Add1)+ L(Add2)+ L(Add1) = 26+ 10+ 10+ 26+ 58+ 26+
26+ 58+ 20+ 26+ 26+ 58+ 58+ 26+ 20+ 26 = 500 ns.

Design area calculation
The area (G) occupied by the solution, which used in fitness
calculation, is estimated according to the number of resources.
Let Vi = (v1

i, ..., vk
i) denote a vector of implementation costs of

k resources in the i-th c-step.

The design total area (A) is calculated according to the number of resources in every c-step.
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=
n
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Following the Table 4, the design total is calculated as follows: (A(Add1)+ A(Add4)+ A(Add4)+ A(Add1)+ A(Mpy1)+
A(Add1)+ A(Add1)+ A(Mpy1)+ A(Add2)+ A(Add1)+ A(Add1)+ A(Mpy1)+ A(Mpy1)+ A(Add1)+ A(Add2)+
A(Add1) = 50+ 250+ 250+ 50+ 2300+ 50+ 50+ 2300+ 100+ 50+ 50+ 2300+ 2300+ 50+ 100+ 50=10300 gates.
From the presentation above we see that the algorithm always tries to find the best modules configuration set that meets
the specified design latency if one exists, otherwise either the components library is updated or the resource-constrained
scheduling is repeated again (i.e. the designer creates new initial schedule) with another set of resources. However, the
designer always has the abili ty to modify the produced results or to repeat the entire process with new synthesis
constraints. The designer can also decide to save more design area by introducing resource sharing respecting the
resource set used in the initial schedule. This in turn will restrict the pipelining of the design if the pipelining concept
supposed to be employed on the given design.

4. Experimental results

The presented module selection algorithm has been implemented in C language. Figures 3 through 6 show the
experimental results of the proposed algorithm. These experiments demonstrate the impact of module selection on the
design cost of discrete cosine transform (DCT) [6] and fifth order elliptic wave filter (EWF)  [12] benchmarks. In
addition, the graphs in figures 3 through 6 il lustrate the design space exploration time-area curve with different design
constraints for DCT and EWF examples. For the il lustrated experiments, it is assumed that the delay of a multiplier and
an adder is 1c-step for simplicity only; our scheduling algorithms support muticycled and pipelined functional units.
In all employed experiments, we compare designs obtained using complete set of components in CL with a reduced set
of components in CL, by keeping constant all design parameters other than the component library. The reduced set of
components include only the fastest and the slowest components from each operation type that found in the complete
CL. The reason behind our choice of using the fastest and the slowest from each type is to use the same starting and
ending points for the design space in both experiments in order to clearly il lustrate the difference between both
complete CL and reduced CL design costs.
From all carried experiments we can remark that the lowest-area designs are those obtained with module selection using
a complete set of components. Using reduced CL the designers are unable to find many design points, as well as many
design points with different latency values are mapped to the same area value, which in turn produces a disturbed
design space curve. However, the design space curve is smoother in the case of using complete CL.
Also, we need to mention that we are unable to compare our results with those reported in [10] because the results given
in [10] include functional pipelining, which is not supported yet with our design space exploration methodology.

Evolutionary algorithm:
t = 0
Create initial population
Evaluate population
while (t < tmax) do

select parents for mating using
             2-tournament selection

apply crossover with pc = 60%
if crossover is not used then mutate

             2 genes of parents
create a new population from child

             chromosomes (ensure elitism)
evaluate population
t = t + 1

end

Figure 2: Overview of the evolutionary algorithm
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Tuning the algorithm
Tuning the evolutionary algorithm was done using the changing of the population size, maximum number of
generations, and % of crossover in order to find desirable values that lead to the maximum number of occurrences of
the best solution within ten runs. The worst CPU time (PIII machine) for the ten runs of DCT example was about (06:36
minutes), while it is found as (02:42 minutes) for the ten runs of EWF example. Tables 5 and 6 report such results.

 

Figure (3): Design space exploration of 
DCT design with resource set as(+3, *2)
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Figure (4):  Design space exploration of
 DCT design  with resource set as (+2, * 3)
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Figure (5): Design space exploration of EWF
 design with resource set as (+2, *2)
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Figure (6): Design space exploration of EWF 
design with resource set as (+2, * 1)
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5. Conclusions

We have presented an evolutionary based algorithm to solve the module selection problem in high-level synthesis
systems. However, the algorithm has been integrated in a well-characterized design space exploration methodology [1]
that helps designers to explore and hence, produce efficient designs in a reasonable time. We have carried out many
experiments with different benchmarks, these experiments allow us to claim that our new algorithm is efficient enough
and able to help designers to find the eff icient modules configuration set that satisfies design total latency with the
minimum design cost (area).
The results presented in this paper are encouraging, so we propose to continue this research by further tuning the
algorithm toward more efficient results by including resource-constraints to the core of the presented algorithm, and we
will incorporate functional pipelining as a primary feature in our design space exploration methodology.
It should be noted that unlike other HLS problems, for design space exploration, there is no unified components library
(CL) that exist as a benchmark (to the authors’ knowledge), which could be followed by all research groups to compare
results and improve the available design space exploration methodologies.



Table 5
Algorithm results and tuning for the DCT design with resources (+2, *3)
no. of runs=10, population size =130, max. no. of generations = 10000

Required
Latency

Min. area
achieved

The number of runs the
best fitness occurred

The best fitness
during the runs

The average generation in which the best
fitness of the experiment has occurred

210 88000 10 8550 0
250 67550 7 9090 1030.29
300 59050 3 9180 5001.67
350 54400 2 9230 10011.00
400 55150 5 9260 4291.40
450 51500 1 9270 5140.00
500 50200 1 9290 5616.00
550 47400 6 9290 9712.67
600 45400 8 9290 1782.75
650 42600 3 9300 3115.67
704 38400 10 9300 0

Table 6
Algorithm results and tuning for the EWF design with resources (+2, *2)

no. of runs=10, population size =60, max. no. of generations = 70000
Required
Latency

Min. area
achieved

The number of runs the
best fitness occurred

The best fitness
during the runs

The average generation in which the best
fitness of the experiment has occurred

120 49000 10 3000 0
150 39050 2 3200 17546.50
200 32150 6 3380 4516.83
250 28050 1 3440 1433.00
300 25500 5 3470 7569.60
350 25000 2 3490 1684.50
400 23850 6 3490 1160.50
450 22750 9 3500 4270.22
500 20900 6 3515 1657.00
544 19700 10 3530 0
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