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Abstract

This paper proposes a hew module selection algorithm for high-level synthesis. The algorithm uses an evolutionary
approach to find the modules configuration set that satisfies design timing constraints while minimizing the total design
cost (area). The algorithm has been incorporated in a well-characterized design space exploration strategy that aims to
help designers to systematically find efficient implementation(s) of their designs that meet the design constraints [1] .
Incorporating module selection axis to the design space enable designers to evaluate large number of design
alternatives by varying module selection and the latency or the resources required to implement the given design. We
also present some experimental results for standard benchmarks to show the effectiveness of the algorithm.
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1. Introduction

The role of high-level synthesis (HLS) during the hardware-software mdesign processis needed in order to allow
designersto quickly explore diff erent implementations to the system under design, seethe st and performance figures
of the synthesized modues in terms of area time, power, testability and money. HLS is the design task of mapping an
abstrad behavioral description of a digital system onto a register-transfer-level (RTL) design to implement that
behavior. By using HLS tods in the current state-of-the-art CAD flow systems the designers are dlowed to explore the
design spacemore dficiently.

Given that the main design dedsions such as the number of hardware resources, clock cycle time, and implementation
styles (pipeline, multi-cycle operation, etc.) are made during the scheduling phase, the scheduling step is considered as
the most important step in the whole HL'S process In addition, these dedsions have strong influences on the foll owing
data-path alocaion and binding subtasks. For that reason, scheduling diredly controls the throughput rate of the
produced RTL design and determines the st-speed tradeoffs of the given design. Thus, the process of exploring the
design spacemust include scheduling phase @ one of its main charaderizaion lines, or the exploration processcan be
viewed (diminished) as lving the scheduling problem. In such a way we @an view the solution of the scheduling
problem as the process of exploring a 2-dimensional (2D) design space with one ais representing time (schedule
length), and the other representing the aeaof the design (idedly total design area but often simplified to functional
unit areg. Adding other charaderizaion lines such as module selection and pipelining as main feaures to the design
space aploration processenable designers to get high performance design implementations.

Pipelining can be dassfied to structural pipelining and to functional pipelining. Structural pipelining assured by using
pipelined functional units during the scheduling phase to implement some operations in the produced schedule, while
functional pipelining means subdividing the dgorithm description into sequences of operation stages that will be
performed concurrently. Including pipelining axis into the design space e&ploration methoddogy allows designers
produce high performance designs.

Module selection is the problem of choosing a particular functional unit from alibrary of components for ead operation
in the given initial schedule. The cmponent library contains different aternative implementations for ead resource
type, which are charaderized by different area and delay estimates. Incorporating module seledion axis to the design
space @ables designers to evaluate large number of design alternatives by varying module seledion and the latency or
the resources required to implement the given design.

This paper proposes a new modue seledion algorithm for high-level synthesis. The dgorithm uses an evolutionary
approach to find the modules configuration set that satisfies design timing constraints whil e minimizing the total design
cost (ared. However, we mean by the term modules configuration set the cmplete set of modules that are seleded
from the components library (CL) to implement the design schedule such that it satisfies the total design spedfied
latency. This %t may include none or many instances of the same module that existsin the CL.

The dgorithm has been incorporated in a well-charaderized design space eploration strategy that aims to help
designers to systematicdly find efficient implementation(s) of their designs that med the design constraints [1]. We
also present some experimental results for standard benchmarks to show the dfedivenessof the dgorithm While our
well-charaderized design space eploration methoddogy incorporates <heduling, module selection and structural
pipelining only for the time being, we ae airrently working to include functional pipelining fedure into the proposed
methoddogy [1].



The paper is organized as follows: Sedion 2 reviews related reseach. Sedion 3 describes the proposed agorithm.
Sedion 4 ill ustrates the Experimental results. Finally, concluding remarks are given in Sedion 5.

2.  PreviousWork

During the design spaceexploration process designers ek to find one or more “optimized” implementation(s) for a
given behavioral spedfication. In this paper, we mnsider the design area atimated through the st of functional units
only, and performance of the final design measured as the total latency of the produced schedule.

MOSP agorithm [8], provided a solution to the more restricted form of module seledion problem wherein al instances
of the same operation type ae implemented using the same module type. Even though MOSP initially starts with a
multiple implementation library, the final design implementation is inefficient since it contains only singe
implementation for ead operation type.

MSSR agorithm [7], attempts to solve the scheduling, resource sharing and module seledion at the same time. The
algorithm is based on iterative improvement and structured in threeprocedures. The procedure OPSL, which is the third
procedure in the dgorithm structure, is based on the longest path agorithm. The procedure OPSL is used to seled
appropriate resources from the assciated library to be mapped to ead hyperedge. While the MSSR solves the
scheduling, resource sharing and module seledion iteratively, our module seledion algorithm seleds proper modules
configuration set to the initial schedule that produced by list-based scheduler in which resource sharing and the use of
pipelined functional unitsis already ensured.

Bakshi in [9] [10] proposed a mmponent seledion algorithm combined with pipelining and scheduling process to
charaderize the design space aploration. The mentioned component seledion agorithm uses a heuristic goproach to
creae component substitution lists to guide the gready approach being wsed to solve the modue seledion problem,
whereas our methoddogy uses an evolutionary based approach.

Timmer in [3] proposed module seledion agorithm and scheduling wsing unrestricted libraries. The dgorithm starts by
initial module seledion, and then a list scheduler tries to med the time nstraints with this sledion. If the scheduler
does not succeeal, the module selection hes to be reviewed until a @rred seledion has been made. The dgorithm
formulates the module seledion problem using MILP formulation and iterates the module seledion process before
finding the satisfadtory schedule, which is a very time @mnsuming process The dgorithm also constrains the number of
states or the number of modues. Unlike Timmer algorithm, our module seledion algorithm finds the modules
configuration set that satisfies design time to the given optimized schedule, we don not neel to repea the given
schedule, we may need to repea module seledion processonly if the cmmponents library is updated.

The dgorithm presented in [11] combines module selection with pipelining, but the dgorithm does not suppart the use
of pipelined components and the dgorithm usesinteger linear programming formulation (ILP) that requires exponential
exeaution time, aswell asit seledsonly one candidate module to implement all operations of the same type.

Chantana in [4] reported a module seledion and scheduling algorithm. While in that work they presented a modue
seledion algorithm based on fuzzy logic theory, but their algorithm seleds only one candidate modue to implement all
operations from the same seleded modul e type, which in turn will produceinefficient design.

Ahmed in [6], integrated scheduling, alocation and module selection in the design space e&ploration processusing a
problem-spacegenetic goproad (PSGA). Genetic dgorithms are global probabili stic search techniques that start from
an initial population of generated padential solutions to a problem, and gradually evolve towards better solutions
through a repetitive gplication of genetic operators like (crossover and mutation). In PSGA approad, eadh
chromosome in the initial population consists of two perts: priorities of nodes, and type of functional units and number
of functional units of each version. The priority of each node in the first chromosome is determined by the maximum
number of successors on the aiticd path of that node [6]. Whereas in our case we ae gplying the evolutionary
algorithm only to find the efficient modules configuration set to the given schedule, which was produced by a li st-based
scheduler that incorporates the mobility and underlying DFG structure in the scheduler priority function in order to
produce awell-organized schedules [2]. In addition, the gproad incorporates smple priority function in the same
chromosome that will | ead to inefficient schedules; hence, it will affed the module seledion processas well.

3.  Theproposed algorithm overview

In this sdion, we intend to describe the evolutionary based module seledion algorithm. The dgorithm starts by
reading the following inputs: (1) the initial schedule that satisfies design area @nstraints produced from the list-based
scheduler described in [2]; (2) the required design completion time (design total latency) for the final design; and (3)
CL, which is used by the modue seledion algorithm to find the best modules configuration set that satisfies design
timing with a minimum design cost. A sample of CL that is adopted from [10] is wown in Table 1.

Evolutionary agorithms were successfully applied to otimization [13] and design [14] in recent yeas. It is also known
from those references that the evolutionary algorithm does not guaranteethat the optimal solution is readed in every
run. Furthermore, No Free Lunch theorems claim that the average performance of an evolutionary algorithm and
random seach acossall possible problems isidenticd [15]. On the other hand, if the problem domain is ingeniously
cgptured in the dgorithm then the dgorithm can outperform traditional solutions [15] [16]. The main goa of our
evolutionary based module selection algorithm is to ogtimize the design area (estimated only by the functional units
aress) while satisfying the design spedfied total latency. In another words, for every design point (initial schedule),



which is supplied as an input, there ae many modules configuration sets ead for every individual design total latency
value and the goal of the evolutionary algorithm is to find the set that leads to the minimum design area An example of
fifth order eliptic filter (EWF) [12] initial schedule with two multipliers and two adders as a resource set is illustrated
in Table 2. It is clea from the table that operations are still not mapped to their final modules that will execute them.
Moreover, we need to mention that the term resource set which appea in the paper context and the note resource set as
(+2, *3), which appea in figures 3 through 6 and Tables 5 and 6, means: the maximum all owable number of adders and
multipliers for eat c-step for the given schedule is 2 adders and 3 multipliers. Thisin turn, will help the designersin
the case of modifying the design final schedule by applying resource sharing.

Problem representation

Theinitial schedule supplied as an input to the dgorithm is represented as a sequence of integers. For instance, Table 2
describes an initial schedule for the EWF with a resource set of two adders and two multipliers. The cromosome
representation of the same schedule isillustrated in Table 3 where: (0 denotesa*, lisan +, 2isa-, 3isa<>) and SEP
is a separator of the schedule csteps (e.g. SEP = -1).

The type of a cmponent is given by its position in the string implicitly. A variant of the mmponent is given by a
number (allele of the gene) in the chromosome & a given pasition. The fastest component is always represented as 0.
Thus, the number of variants of a given component defines a set of legal values of a given gene. The representation of
the problem is natural, but more variants of a mmponent than it is required may appea in the final schedule.

Table 2 Table 3
Initial schedule . - R
st Design representation of theinitial
1 |+ schedule (input to evol. Algorithm)
2 + c-step
3 + 1 1 1 SEP
4 + 2 1 SEP
5 * 3 1 SEP
6 + + 4 1 SEP
7 + + 5 0 0 SEP
8 + * 6 1 1 SEP
9 + + 7 1 1 SEP
10 + + 8 1 0 0 SEP
11 halll 9 1]1 SEP
12 il I I 10 11 SEP
13 i + 11 11 SEP
14 + + 12 1 0 1 0 SEP
15 + + 13 0 1 0 1 SEP
16 + + 14 1 1 SRR
15 11—
16 P TS
Table 1
components library CL ~
I | Comp. Cost Delay Evolutionary
D | Name gates (ns) .
Mpys | 4500 | 21 Algorithm
* | Mpy7 4000 23
* | Mpy6 3500 25
* | Mpys 2900 29 Table 4
* Mpy4 2700 33 H
T Mpy3 50056 Final schedule
* | Mpy2 2400 44 1 Addl | Add2
* [ Mpyl 2300 | 58 | Add4
+ Addé 500 3 Add4
+ Add5 400 6 ’) Addl
+ Add4 250 10 —_ 1 M 1
T Ad T 00 T 14 L atency=s0ons ¢ AMpyl | Mpyd
N o
- | Subs 500 3 8 Add4 | Mpyl | Mpyl
Subs 200 5 9 | Add2 | Add2
Sub4 250 10 10 | Addl [ Addl
Sub3 200 14 11 Addl Add2
Sub2 100 20 12 | Addl | Mpyl | Add2 | Mpyl
Subl 50 26 13 | Mpyl | Addl | Mpyl | Addl
14 | Add3 | Addl
) ) ) ) ] 15 | Add2 | Add2
Figure (1): Evolutionary algorithm design representation 16 | Addl [ Add2

Parameters of the evolutionary algorithm

One-paint crossover is applied with probability p. = 60%. Two randomly seleded genes are mutated per chromosome if
crossover is not used. Both two operators produce @rred circuits acording to the schedule. Tournament seledion with
base 2 and €liti sm are employed. Initial population is generated either from the fastest variants or the slowest variants or
from a combination (50:50) of the fastest and the dowest one. We have found from the experiments that (50:50)
combination yields better convergencethan if we start from the fastest combination or from the slowest one.

Fitnessfunction
The fitness function assgns higher values to chromosomes that exhibit latency (L) equal to the required latency (RL)
and that minimizethe number of gates (G) needed for implementation.



FitnessvValue= 1 if L> RL;
=BEST_FITNESS-G-|L-RL|* 5 otherwise;

where BEST_FITNESSis asufficiently high value.
Design latency calculation

Latency L is cdculated as a sum of latencies L; of the slowest components in each schedule c-step used in the
chromosome, Which means the component that has the maximum delay (the slowest) value represents the delay of the

corresponding c-step in the schedule. Evolutionary algorithm:
L = z L, t=0 . .
= Create initial population

where n isthe number of schedule c-steps. Evaluate population

] . . ) while (t < tmax) do
For instance the latency of the design example given in Table select parents for mating using
L(AddD)+ L(Mpyl)+ L(AddD+ L(AddD+ L(Mpyl)+ apply crossover with p, = 60%
L(Add2+ L(AddD+ L(Add)+ L(Mpyl)+ L(Mpyl)+ if crossover is not used then mutate
L(AddD)+ L(Add2+ L(Addl) = 26+ 10+ 10+ 26+ 58+ 26+ 2 genes of parents
26+ 58+ 20+ 26+ 26+ 58+ 58+ 26+ 20+ 26 = 500 s, create a new population from child

) ) chromosomes (ensure elitism)
DeS|gn area calculation evaluate popu|ation
The aea(G) occupied by the solution, which used in fitness t=t+1
caculation, is estimated acwrding to the number of resources. | gng
Let V' = (v, ..., v) denote avedor of implementation costs of
k resourcesin the i-th c-step. Figure 2: Overview of the evolutionary algorithm

k
G=3 Max,()
IS
The designtotal area(A) is cdculated acording to the number of resourcesin every c-step.

n k .

ATV
Following the Table 4, the design total is cdculated as follows: (A(Add1)+ A(Add4+ A(Add4)+ A(AddD)+ A(Mpyl)+
A(AddD)+ A(AddD)+ A(Mpyl)+ A(Add2+ A(AddD+ A(Addl)+ A(Mpyl)+ A(Mpyl)+ A(Addl)+ A(Add2+
A(Add1) = 50+ 250+ 250+ 50+ 2300+ 50+ 50+ 2300+ 100+ 50+ 50+ 2300+ 2300+ 50+ 100+ 50=10300 gates.
From the presentation above we seethat the dgorithm always tries to find the best modules configuration set that meds
the spedfied design latency if one exists, otherwise ather the cmponents library is updated or the resource-constrained
scheduling is repeded again (i.e. the designer creaes new initial schedule) with another set of resources. However, the
designer aways has the aility to modify the produced results or to repeda the entire process with new synthesis
constraints. The designer can also dedde to save more design area by introducing resource sharing respeding the
resource set used in the initial schedule. Thisin turn will restrict the pipelining of the design if the pipelining concept
supposed to be employed on the given design.

4. Experimental results

The presented modue seledion algorithm has been implemented in C language. Figures 3 through 6 show the
experimental results of the propased algorithm. These experiments demonstrate the impad of module seledion on the
design cost of discrete cosine transform (DCT) [6] and fifth order elliptic wave filter (EWF) [12] benchmarks. In
addition, the graphs in figures 3 through 6 illustrate the design spaceexploration time-area arve with different design
constraints for DCT and EWF examples. For the il lustrated experiments, it is assumed that the delay of a multiplier and
an adder is 1c-step for simplicity only; our scheduling algorithms suppart muticycled and pipelined functional units.

In al employed experiments, we compare designs obtained using complete set of components in CL with areduced set
of components in CL, by keeping constant all design parameters other than the component library. The reduced set of
components include only the fastest and the slowest components from each operation type that found in the complete
CL. The reason behind our choice of using the fastest and the slowest from each type is to use the same starting and
ending points for the design spacein both experiments in order to clealy illustrate the difference between both
complete CL and reduced CL design costs.

From all carried experiments we can remark that the lowest-areadesigns are those obtained with module seledion using
a omplete set of components. Using reduced CL the designers are unable to find many design points, as well as many
design points with different latency values are mapped to the same aeavalue, which in turn produces a disturbed
design space arrve. However, the design space airve is smoother in the cae of using complete CL.

Also, we need to mention that we are unable to compare our results with those reported in [10] because the results given
in [10Q] include functional pipelining, which isnot supparted yet with our design space &ploration methoddogy.



Tuning the algorithm

Tuning the evolutionary agorithm was done using the danging of the population size maximum number of
generations, and % of crossover in order to find desirable values that lead to the maximum number of occurrences of
the best solution within ten runs. The worst CPU time (PIII machine) for the ten runs of DCT example was about (06:36
minutes), whileit is found as (02:42 minutes) for the ten runs of EWF example. Tables 5 and 6 report such results.

—&—general approach without resource sharing with —e— general approach without resource sharing w ith
reduce CL reduced CL
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5. Conclusions

We have presented an evolutionary based algorithm to solve the module seledion problem in high-level synthesis
systems. However, the dgorithm has been integrated in a well-charaderized design space eploration methoddogy [1]
that helps designers to explore and hence, produce dficient designs in a reasonable time. We have caried out many
experiments with different benchmarks, these experiments allow us to claim that our new algorithm is efficient enough
and able to help designers to find the efficient modules configuration set that satisfies design total latency with the
minimum design cost (ared).

The results presented in this paper are encouraging, so we propose to continue this reseach by further tuning the
algorithm toward more dficient results by including resource-constraints to the re of the presented algorithm, and we
will incorporate functional pipelining as a primary feaure in our design space eploration methoddogy.

It should be noted that unlike other HL'S problems, for design space &ploration, there is no unified components library
(CL) that exist as a benchmark (to the authors' knowledge), which could be followed by al reseach groups to compare
results and improve the avail able design spaceexploration methoddogies.



Table5
Algorithm results and tuning for the DCT design with resources (+2, *3)

no. of runs=10, population size =130, max. no. of generations = 10000

Required Min. area The number of runsthe | Thebest fitness | The arerage generation in which the best
Latency adieved best fitnessoccurred during theruns | fitnessof the experiment has occurred

210 88000 10 8550 0

250 67550 7 9090 1030.29

300 59050 3 9180 5001.67

350 54400 2 9230 10011.00

400 55150 5 9260 4291.40

450 51500 1 9270 5140.00

500 50200 1 9290 5616.00

550 47400 6 9290 9712.67

600 45400 8 9290 1782.75

650 42600 3 9300 3115.67

704 38400 10 9300 0

Table6

Algorithm results and tuning for the EWF design with resources (+2, *2)

no. of runs=10, population size =60, max. no. of generations = 70000

Required Min. area The number of runsthe | Thebest fitness | The arerage generation in which the best
Latency adchieved best fitnessoccurred during theruns | fitnessof the experiment has occurred

120 49000 10 3000 0

150 39050 2 3200 17546.50

200 32150 6 3380 4516.83

250 28050 1 3440 1433.00

300 25500 5 3470 7569.60

350 25000 2 3490 1684.50

400 23850 6 3490 1160.50

450 22750 9 3500 4270.22

500 20900 6 3515 1657.00

544 19700 10 3530 0
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