A System Architecture of Networked Pressure Sensors

MIROSLAV SVEDA*, RADIMIR VRBA**, PETR BENES***
*Dept. Computer Sci.&Engineering, **Dept. Microelectronics, ***Dept. Automation&Measurements
Brno University of Technology
Bozetechova 2
612 66 Brno
CZECH REPUBLIC
{sveda@dcse, vrbar@umel, benesp@dame}.fee.vutbr.cz
http://www.fee.vutbr.cz/{~sveda, ~vrbar, ~benesp}

Abstract:

- This contribution deals with sensor networking concepts stemming from the IEEE 1451 smart

transducer interface architecture. The paper reviews that approach from the viewpoint of coupling sensor-based
appliances and the Internet. Kernel of the paper focuses on the application of the discussed architecture for a
distributed pressure measurement system, stressing both intra-system and Internet connectivity issues. Next
sections discuss in more detail the IEEE 1451 smart transducer interface for sensors and actuators as an emerging,

standard-based networking framework.

Key-Words: - Decentralized systems, remote sensing, smart sensors, intranet, IEEE 1451, pressure analyzer

1 Introduction
Current decentralized systems of remote sensing can
comprise various technologies, including such hot
topics as Bluetooth [1] and Smart Dust [12]. More
usual, industrial distributed systems typically
encompass, at their lowest level, diverse digital
sensor-to-controller connections based on low-level
fieldbuses that constitute the bottom, vendor-
dependent segments of hierarchical communications.
That hierarchy includes higher-level fieldbus or LAN
backbones and, more recently, an access to and from
intranets/Internet. Consequently, such systems must
comprise suitable interconnections of incident
backbone and lower fieldbus segments, which
intermediate not only top-down commands and
bottom-up responses but also remote system
management.

A special case of the previous problem appears
connecting a fieldbus with sensors to an intranet.
While for the majority of high-level fieldbuses the
solutions are commercially available, they offer, as a
rule, a proprietary approach. Similarly to fieldbus-to-
fieldbus coupling, it is possible only to map the broad
variety of concepts applicable to fieldbus-to-intranet
interconnections.

Current industry is
proprietary hardware and

migrating away from
software platforms

mentioned above in favor of open and standardized
approaches. Internet technologies such as Java,
WWW, TCP/IP, and also Ethernet are rapidly
becoming the platforms of choice for building next
generation distributed measurement and control
systems. The framework, which can support the
current trend, is the IEEE 1451 smart transducer
interface architecture that enables to unify not only
interconnecting smart sensors with various
fieldbuses but also direct coupling to the Ethernet-
based intranets. The proposed standards include an
object-oriented information = model targeting
software-based, network independent, transducer
application environments with a unified digital
interface and a communication protocol for
accessing sensors and actuators.

2 Sensors-to-Intranet Coupling

To join fieldbus-based sensors to an Ethernet-
compatible intranet, it is necessary to develop a full
gateway that has to adhere to the adjacent fieldbus
protocol profile on one side and to the selected
Internet protocol profile on the other side, and has to
translate between messaging protocols of application
layers in both domains. While a concrete fieldbus

protocol suite usually predetermines the fieldbus side
of the gateway architecture, the intranet side offers
free choice among many possible profiles even if we
focus our attention on WW W-based technologies, see
e.g. [2], [9].

Evidently, the interconnections of sensors with
Internet/intranets by mediating fieldbus systems result
in multitude of proprietary solutions. Those
interconnections cannot be standardized
internationally because of the cancellation of the
related IEC Fieldbus standardization initiative. Hence,
that methodology appears useful only to meet special
application or implementation requirements. On the
other hand, there is a possibility how to manage that
problem utilizing the sensor/actuator-based
standardized approach mentioned above.

The IEEE 1451 consists of the family of standards
for a networked smart transducer interface that
include namely a smart transducer information model,
1451.1 [3], targeting software-based, network
independent, transducer application environments,
and a standard digital interface and communication
protocol, 1451.2 [4], for accessing the transducer via
the microprocessor modeled by the 1451.1. (The
transducer information model called as network
capable application processor, NCAP, is discussed in
more detail in Section 4.) The next two standards,
1451.3 and 1451.4, extend the possible single-
attached configurations to embedded distributed
multidrop systems and to mixed-mode
communication protocols for analog transducers.

The IEEE 1451 framework enables to develop
unified interconnection to the Ethernet-based intranet.
The following section reviews the use of the IEEE
1451 standards in a real application.

3 Pressure Analyzer

The pressure analyzer consists of a group of smart
pressure sensors interconnected by the Ethernet-based
intranet with supporting nodes, enabling also to join to
components on various fieldbuses, see Fig. 1. The
complete research task has been aimed at application-
driven pressure measurement processes and tools
starting with the study of various physical principles
and designs of transducers up to the final data
processing implementation including internal and
external data communications.

3.1 Communication interface

One of the initial problems to be solved consisted in
the selection of a unified communication interface.
The first idea appeared to utilize the international
standard IEC Fieldbus and to develop an IEC
fieldbus-to-intranet gateway with a communication
architecture fitting this application domain. When the
IEC Fieldbus standardization initiative was cancelled,
our research group focused attention on the IEEE
1451 standard. The final solution of that application
respects IEEE 1451 in such a way that enables both
direct coupling of sensors to intranet and to
interconnected fieldbuses.

3.2 Smart sensor internal communication

The core components of the pressure measurement
applications appear to be pressure sensors, in this case
smart devices equipped with microprocessors. Each
smart sensor contains one of two NCAP
implementations based either on 16-bit ARM 7 or on
8-bit Rabbit microprocessors that both provide
realization of the 1451.1 object model for intranet
interconnectivity and the access to the 1451.2
interface for connecting to pressure sensors with
reflected laser beam and diffractive lens.

Read-out sensing system applies a combination of
two principles that provide both high precision and
wide range pressure measurements. Large
displacements of a membrane are measured by the
position of the reflected focused laser beam. Small
position changes are measured by one-side layer
diffractive lens principle. Sensor output signal is
conditioned in digital by ADuC812 one-chip
microcomputer, which provides the IEEE1451.2
interface as one of its communication ports.

3.3 Intranet connectivity

The intranet side stems from a Java-based architecture
with Web server in the role of a half gateway. The
Java applet represents the client-side of the client-
server communication model. The software half
gateway provides the key server-side capabilities
allowing Java clients to connect, subscribe, and
communicate to the smart sensors. Java can directly
support client-server application architectures as the
core Java specification includes a TCP/IP networking
APL.

The developed Java applet uses the core java.net
package to implement a client-server application
distribution. This allows the Java applet client to
access smart sensors and supporting nodes. The Java
applet consists of a series of object classes, including
multi-threaded applet environment, animation, and
TCP/IP-based network client communications.

3.4 Fieldbus connectivity

The application architecture employs a configurable
server implementing the functionality of a fieldbus
gateway that enables to access various fieldbus-level
components compatible to such protocols as CAN
with DeviceNet or CANopen, Fieldbus Foundation,
and LonWorks. Moreover, we consider the fieldbus-
to-fieldbus interconnection techniques developed
earlier [11], which can further extend the range of
connectable devices.

This server has supported the reuse of previously
developed sensors not only for launching the system
implementation experiments and sensor testing
purposes but also for real-life, concrete application
development.

4 IEEE 1451 Network Architecture

To explain the principles of the sensor networking
architecture described above, this section reviews the
IEEE 1451.1 standard [3]. The 1451.1 information
model [5] deals with an object-oriented definition of a
network capable application processor, NCAP, which
is the object-oriented embodiment of a smart
networked device. This model includes the definition
of all application-level access to network resources
and transducer hardware.

4.1 Object model
The object model definition encompasses a set of
objects classes, attributes, methods, and behaviors
that provide a concise description of a transducer and
a network environment to which it may connect. The
standard brings a network and transducer hardware
neutral environment in which a concrete
implementation can be developed.

The standard uses block and base classes to
describe the transducer device. The 1451.1 define
four component classes offering patterns for one

Physical Block, one or more Transducer Blocks,
Function Blocks, and Network Blocks. Each block
class may include specific base classes from the
model. The base classes include Parameters, Actions,
Events, and Files, and provide component class.

All classes in the model have an abstract or root
class from which they are derived. This abstract class
includes several attributes and methods that are
common to all classes in the model and offer a
definition facility to be used for instantiation and
deletion of concrete classes. In addition, methods for
getting and setting attributes within each class are
also provided.

4.2 Block classes
Block classes form the major blocks of functionality
that can be plugged into an abstract card-cage to
create various types of devices. One Physical Block
is mandatory as it defines the card-cage and abstracts
the hardware and software resources that are used by
the device. All other blocks and component base
classes can be referenced from the Physical Block.
The Physical Block representing the card-cage
contains all the logical hardware and software
resources in the model. These resources determine
the basic characteristics of the device being
assembled. Information contained in the Physical
Block as attributes include the manufacturer’s
identification, serial number, hardware and software
revision information, and more importantly, data
structures that provide a repository for other class
components. As previously mentioned, the Physical
Block is the logical container for all components in
the device model; therefore, it must have access to
and be able to locate all available resources
instantiated by the device. The data structures
provided by the Physical Block house pointers
(Instance ID) to these components in that way offer
easy indirect access to them. To communicate to a
device or a device object across the network when a
remote NCAP requests an attribute from the Physical
Block, that Physical Block has to resolve address
queries from the network. For this purpose a
hierarchical naming/addressing scheme is used based
on unique Tags, i.e. ASCII descriptions of the block
or component names, which can be concatenated
together, to form fully qualified addresses. The
Physical Block is the centralized logical connector or
backplane that the other blocks plug into. Therefore,

the Physical Block must provide a Locate method to
find other components in the system.

The Transducer Block abstracts all the
capabilities of each transducer that is physically
connected to the NCAP 1/O system. During the
device configuration phase, the description is read
from the hardware device what kind of sensors and
actuators are connected to the system. This
information is used by the Physical Block to create
and configure the related type of transducer block.
The Transducer Block includes an I/O device driver
style interface for communication with the hardware.
The 1/O interface includes methods for reading and
writing to the transducer from the application-based
Function Block using a standardized interface (i.e.,
io read and io write). The I/O device driver
paradigm provides both plug-and-play capability and
hot-swap feature for transducers. This means any
application written to this interface should work
interchangeably with multiple vendor transducers.

In a similar fashion the transducer vendors
provide an I/O driver to the network vendors with
their product that supports this interface. The driver
is integrated with the transducer’s application
environment to enable access to their hardware. This
approach is identical to the interface found in device
drivers for UNIX.

The Function Block equips a transducer device
with a skeletal area in which to place application-
specific code. The interface does not specify any
restrictions on how an application is developed. In
addition to a State variable that all block classes
maintain, the Function Block contains several lists of
parameters that are typically used to access network-
visible data or to make internal data available
remotely. It means, any application-specific
algorithms or data structures are contained within
these blocks to allow separately for integration of
application-specific functionality using a portable
approach.

The Network Block is used to abstract all access
to the network by the block and base classes
employing a network-neutral, object-based
programming interface. The network model provides
an application interaction mechanism based on the
remote procedure call (RPC) framework for client-
server distributed computing settings. The RPC
mechanism supports both a client-server and a
publisher-subscriber paradigm for event and message
generation. In support of these two types of

application interaction, a communication model that
stems from the notion of a port is defined in the
specification. This means, if a block wishes to
communicate with any other block in the device or
across the network, it must first create a port that
logically binds the block to the port name. Once
enough information about addressing of the port is
known, the port can be bound to a network-specific
block address. At this point the logical port address
has been bound to the actual destination address by
the underlying control network technology. Any
transducer application’s use of the port name is now
resolved to the endpoint associated with the logical
destination. This scheme allows a late binding effect
on application uses of the ports so that addresses are
not hard-coded or dependent upon a specific
architecture. The port capability is similar to the
TCP/IP socket-programming interface where a
socket is created and bound using an application
specific port number and IP address. Once bound,
the socket can be used for data transfer.

4.2 NCAP implementation

The above introduced object model has to be
implemented so that the NCAP can provide all
communication between each client and the
connected sensor. Namely, the Network Block and
supporting hardware must prop up the complete
protocol stack of the adjacent network including a
messaging protocol respected in frame of the
application.

The pressure analyzer includes examples of two
NCAP implementations by the ARM 7 and Rabbit
microprocessors software for direct sensor-to-intranet
coupling. The fieldbus gateway server demonstrates
how to reuse various fieldbus-dependent sensors to be
accessible from the intranet.

S Related Work
The research group at the NIST [8] developed
demonstration architectures for coupling 1451-
compatible devices to fieldbuses or Internet-based
intranets [5], [9], [10]. Those papers originally
attracted our attention to the IEEE 1451 standards.

We are aware of announced commercial solutions
both of the 1451.1 NCAP [6] and of the 1451.2-
compatible pressure sensor [7]. Unfortunately, those

devices neither meet the pressure analyzer
requirements specification nor are currently available.

6 Conclusion

This paper presents an application that can offer a
design pattern for 1451 sensors-based embedded
systems. It deals with IEEE 1451 smart transducer
network interface mediating an access from the
Internet to networked sensors. The kernel of the paper
focuses on the pressure analyzer as a real-world
application, stressing the communication architecture
including intranet connectivity issues.

Acknowledgments

The authors appreciate contributions of their
colleagues from the Department of Computer Science
and Engineering, the Department of Microelectronics,
the Department of Automatic Control and
Measurement Techniques, and the Department of
Telecommunications at the Brno University of
Technology, namely Frantisek Zezulka, Vladislav
Musil, Kamil Vrba, Daniel Becvar, Michal Strach and
Michal Jurica to the presented work.

This research has been supported by Grand
Agency of the Czech Republic under the contract
GACR 102/00/0938 TLAKAN and by the Czech
Ministry for Education in frame of the Research
Intention JC MSM 262200012: Research in
information and control systems.

References:

[1] Bluetooth Special Interrest Group, The Official
Bluetooth Website, http://www.bluetooth.com/

[2] D. Biihler and W. Kiichlin and G. Gruhler and G.
Nusser, The Virtual Automation Lab -- Web
Based Teaching Automation Concepts,
Proceedings 7th IEEE ECBS2000 Conference,
Edinburgh, Scotland, IEEE Comp. Soc., 2000,
pp.156-164.

[3] IEEE P1451.1 D1.83, Draft Standard for a Smart
Transducer Interface for Sensors and Actuators --

Network Capable Application Processor (NCAP)
Information Model. IEEE, New York, December
1996

[4] IEEE P1451.2 D3.05, Draft Standard for a Smart
Transducer Interface for Sensors and Actuators --
Transducer to Microprocessor Communication

Protocols and Transducer Electronic Data Sheet
(TEEDS) Formats, IEEE, New York, August 1997

[5] K.B. Lee and R.D. Schneeman, A Standardized
Approach for Transducer Interfacing:
Implementing IEEE-P1451 Smart Transducer
Interface Draft Standards, Proceedings Sensors
Expo, Philadelphia, Hermes Publishing, October
1996, pp.87-100.

[6] Microsmith Inc., NetBoss, IEEE 1451.1 NCAP
Network Control Module, 2000,
http://www.microsmith.com

[7] Moore Products Co., IEEE 1451.2-Compatible
Pressure Sensors, 2000, http://www.mpco.com

[8] National Institute of Standards and Technology,
NIST IEEE 1451 Website, 2000,
http://www.motion.aptd.nist.gov

[9] R.D. Schneeman and K.B. Lee, Multi-Network
Access to IEEE P1451 Smart Sensor Information
Using World Wide Web Technology, NIST
Interagency Report 6136, National Institute of
Standards and Technology, Gaithersburg,
Maryland, USA, 1997.

[10] R.D. Schneeman, Implementing a Standards-
based Distributed Measurement and Control
Application on the Internet, National Institute of
Standards and Technology, Gaithersburg,
Maryland, USA, 1999

[11] M. Sveda and R. Vrba and F. Zezulka, Coupling
Architectures for Low-Level Fieldbuses,
Proceedings of the 7th IEEE ECBS2000
Conference, Edinburgh, Scotland, IEEE Comp.
Soc., 2000, pp.148-155.

[12] B. Warneke, M. Last, B. Liebowitz, and K.S.J.
Pister, Smart Dust: Communicating with a
Cubic-Millimeter Computer, [EEE Computer,
Vol.34, No.1, 2001, pp.44-51.

Smart
Pressure
Sensor
WWW Server
o
S
§ 2 PSmart
B0 ressure
£ = Sensor
[
=
jea)
SQL Server
Smart
Pressure
Sensor
S
o~
@)
=
WWW Client
Analog Inputs
Data Logger
Digital Inputs
2 Power Components
g)
=
=
e
[}
£
g
Fieldbus = PLC
Gateway Control
Server System

FF Bus
CAN Bus
etc.

Fig. 1. Pressure analyzer

