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Abstract

In this habilitation thesis, we discuss two complementary approaches to formal verification
of infinite-state systems—namely, the use cut-offs and automata-based symbolic model
checking (especially the so-called regular model checking). The thesis is based on extended
versions of multiple conference and journal papers joint into a unified framework and
accompanied with a significantly extended overview of other existing approaches.

The presented original results include cut-offs for verification of parameterised net-
works of processes with shared resources, the approach of abstract regular model checking
combining regular model checking with the counterexample-guided abstraction refinement
(CEGAR) loop, a proposal of using language inference for regular model checking, tech-
niques for an application of regular model checking to verification of programs manipulat-
ing dynamic linked data structures, the approach of abstract regular tree model checking as
well as a proposal of a novel class of tree automata with size constraints with applications
in verification of programs manipulating balanced tree structures.
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Chapter 1

Introduction

Computer-based systems play an increasingly important role in our everyday life. Conse-
quently, their failures may cause more and more serious problems implying huge losses of
money, or even worse, the health or life of people can be endangered. Moreover, even if
the failures of computer-based systems do not cause direct losses to their users, they may
cause significant losses to the producers of these systems (due to the loss of confidence
in their products). In addition, there is also a rising danger that even if the errors left
in computer-based systems will not make them fail by themselves under normal circum-
stances, they may become weak points that can be abused for an intentional attack on
the given system. At the same time, current computer-based systems are also increasingly
more complex, and thus there is also more and more space for errors.

Correspondingly, a significant stress is put on the use of various methods of detecting
errors in computer-based systems including code inspection, simulation, and testing. Re-
search and development in these areas is constantly quite active leading to new methods
and methodologies as, e.g., model-based design, agile testing, or extreme programming.
However, these—let us say “traditional”—methods suffer one important deficiency: they
cannot prove a system correct, i.e., they cannot prove it to be free of errors wrt. some
specification. That is why one can also witness a strong and ever rising interest in the de-
velopment and applications of formal verification methods that can remove this constraint.
Moreover, it turns out that even though the formal verification process may sometimes
not be completely finished due to its high computational price, it may still be quite valu-
able. This is because before the process runs out of resources, it may find a number of
errors that are often different from those find by traditional methods, which is due to the
different principles on which these methods work.

The interest of various leading industrial companies and organisations in formal ver-
ification methods may be documented by the existence of research groups specialised in
this area, e.g., within Microsoft, Intel, IBM, Siemens, NASA, Airbus, etc., and/or in a
strong cooperation of the companies with the academia on this subject. Another indica-
tion is also the support coming from the companies to various leading scientific conferences
from the given area like TACAS or CAV. The interest in formal verification methods is,
of course, not limited to industrial companies, but appears within various open source
projects too—we can mention here, for instance, the attempts to formally verify the L4
microkernel.

Motivated by the above, the work presented in this thesis contributes to the research
on certain forms of formal verification. We now first discuss a bit more the notion and
various existing forms of formal verification and then we introduce the concrete contents
of the thesis and position it within the research on formal verification.
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1.1 Formal Verification

We use the term formal verification to denote verification methods based on formal, math-
ematical roots and (at least potentially) capable of proving error freeness of systems wrt.
some correctness specification. The potential to detect all errors wrt. a given specification
is called soundness of a method. It means that if such a method terminates and claims
a system correct wrt. a certain specification, the system is really correct.1 On the other
hand, we call a method complete if it does not raise false alarms, i.e., if it does not report
spurious errors.

The probably most popular approaches used in computer-aided formal verification
include theorem proving, model checking, static analysis, and abstract interpretation. We
have to, however, note that the meaning of some of these terms is sometimes not completely
sharp and not always understood in exactly the same way. Also the approaches may be
used in various combinations and/or non-standard extensions.

The present thesis deals, in particular, with the area of model checking. However,
for a better orientation in the subject, we now very briefly introduce all the mentioned
approaches and characterise their relations.

Theorem Proving. Theorem proving is an (often only semi-automated) approach using
some inference system for deducing various theorems about the examined system from
the facts known about the system and from general theorems of logic, arithmetics, etc.
This approach is quite close to classical mathematical reasoning, just it is supported
by computer-aided tools, the so-called theorem provers (e.g., PVS [OSRSC01], Isabelle
[NPW05], ACL2 [KMe00b, KMe00a], and many others), taking care of remembering all of
the so-far deduced facts, of correctly applying inference rules, etc. The approach is very
general, but often very hard to use. The approach is sometimes also weak in generating
counterexamples (diagnostic information) to correctness specifications in faulty systems—
one may have troubles to distinguish whether the effort to prove some property is failing
because there is an error in the system being examined, or because the user of the method
is not bright enough. On the other hand, there is also a lot of progress in developing
theorem provers capable of running in a fully automated mode, which are recently often
used in a combination with other methods—for instance, as a support for different kinds of
automated abstraction (such as the predicate abstraction [GS97]) for model checking.

Model Checking. Model checking [CGP99] is an approach of automated checking
whether a model of a system (where the model can sometimes be identical to the sys-
tem) satisfies a certain correctness specification. The specification is typically written in
some temporal logic like LTL [Pnu77], CTL [CE81], CTL∗ [EH86], or µ-calculus [Koz83],
but some simpler specification means such as the C-like assertions or end-state or progress
labels known from Promela [Hol97] can also be used. Traditionally, model checking is
based on a systematic exploration of the state space of the examined model. Its roots can
be traced back to the works [CE81, QS82]. Model checking can usually be fully automated
and can generate error traces explaining why a certain property does not hold in a given
system. Its main disadvantage is the state space explosion problem, i.e., the need to cope
with the exponential growth of the number of reachable states in the size of the examined
systems.

1Note that sometimes the potential of a method to be sound may be deliberately sacrificed to its
efficiency leading to an error detection method with formal verification roots (cf., e.g., the bit-state hashing
method used, for instance, in the Spin model checker [Hol97] where different reachable states of a system
being verified are not distinguished when they have the same hash value).
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To cope with the state explosion problem, many different heuristics have been proposed
[Val98, CGP99]. Among them, without trying to give a complete account of the numerous
existing techniques, we can mention symbolic verification dealing in an efficient way with
sets of states instead of the individual states. The most famous symbolic verification
method is probably the one based on binary decision diagrams [Bry86, BCM+92], which
is behind many of the successes of model checking, especially in hardware.

Further, various state space reduction techniques have been proposed. Some of them
are based, for instance, on symmetries [CFJ93, ID96a, SMG97] or partial-order reduction
techniques [Val88, KP88, God91]. These techniques allow one to avoid generating and
exploring some of the states as it is clear that their properties are not important in
general, or at least wrt. the property being checked, or are covered by the properties
of other states.2 Moreover, when the property to be examined is being checked in parallel
to the state space generation, which is denoted as the so-called on-the-fly model checking,
one can avoid not only the generation of some not important states (which can be seen
not to have any chance to influence the given property of interest), but also stop as soon
as an error is found without having to generate many further reachable states.

The capabilities of formal verification based on model checking can also be enhanced by
combining model checking with modular verification [Pnu89, CLM89, CCST05, AMN05]
or automated abstraction [CGL94, GS97, BLO98, CGJ+00b, CCG+04, HJMS03]. In the
latter case, traditionally, model checking is applied to systematically and precisely explore
the state space of an abstract model derived from the concrete model to be verified.3 The
precision of the abstraction may be adjusted on demand when a spurious counterexam-
ple caused by a too rough abstraction is encountered. The refinement can be driven by
the spurious counterexample itself leading to the so-called counterexample-guided abstrac-
tion refinement (CEGAR) framework. A prominent role among automated abstraction
techniques applied with model checking is currently played by the so-called predicate ab-
straction4 [GS97], which is very often used especially in the domain of software verification
[HJMS03, CCG+04].

Static Analysis. Static analysis concentrates on intelligent browsing through the source
code of a system and collecting some abstract (approximate) information about it rather
than systematically exploring its reachable states. There exist many different forms of
static analysis ranging from simple syntactic checks and type analyses to more complicated
fixpoint computations on the control flow graph of the system being examined (cf., e.g.,
[EM04, Sch06]). In many cases, static analysis is not designed primarily for checking
correctness of programs, but to be used within compiling, code optimisation, etc. Static
analyses are often highly specialised. On the other hand, they sometimes just collect some
information about the system, and it is up to the user to exploit it for a given verification
task.

Compared to model checking, static analyses have often the advantage of not needing
any model of the environment in which the system should run and of being able to handle

2For instance, symmetries allow one to claim some states equal by exchanging the roles of some of their
components—one can, e.g., rotate the philosophers in the well-known dining philosophers problem, etc.
Partial-order reduction techniques allow one to explore only some interleavings of concurrently enabled
actions as it can be shown that nothing new can be seen in the other interleavings.

3Moreover, recently, abstraction is beginning to be used also within the state space exploration process
itself to speed it up [McM05] or to make it terminate in infinite-state model checking [BHV04].

4Very roughly said, within predicate abstraction, one does not track the precise values of various state
variables, but only some predicates about them (e.g., x ≥ 0, x ≤ y + 5, etc.). To find out how the validity
of the tracked predicates changes in response to the transitions being fired, one can use specialised decision
procedures or theorem provers operated in a fully automated way
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very big code bases. The need to model the environment and usually also parts of the
system being examined (which would otherwise be too big to be handled) may hurt the
model checking approach by being quite expensive and also by possibly hiding some errors
(that may be ruled out by the manual modelling done) [EM04].

On the other hand, not tracking the (exact) values that particular system variables
may get, can lead to a vast number of false alarms raised by static analysis.5 Moreover,
some kinds of errors may be difficult or impossible to discover via certain static analyses.
For instance, it may be difficult or impossible to identify all possible “syntactic patterns”
that could lead to certain errors, and then the otherwise very efficient methods like those
mentioned in [EM04] may be hard to use.

Of course, there is a number of works trying to increase the precision and expressive-
ness of static analysis by remembering more and more about the reachable values of the
variables. Then, however, these approaches are getting closer and closer to model checking
both in their advantages and disadvantages.

Abstract Interpretation. Abstract interpretation is introduced in [CC77, CC79, Cou81,
Deu92] as a theory of a sound approximation of the semantics of computer programs in-
tended mainly for constructing various static analyses. Abstract interpretation consists
in giving a certain class of programs several semantics linked by abstraction and con-
cretisation functions. The semantics are based on monotonic functions over ordered sets,
typically lattices. The abstraction, concretisation, and semantic functions must be linked
in a certain way prescribed by the abstract interpretation framework (we will not go into
the formal details here—they can be found in the above referenced literature). The seman-
tics of a program is computed as the least fixpoint of the semantic function over the given
ordered set. To make the computation terminate even over infinite semantic domains,
widening functions are to be provided.

The notion of abstract interpretation is quite flexible and can be instantiated in a num-
ber of ways significantly differing in their preciseness (basically ranging from the precise-
ness of simple syntactic static analyses to full model checking). Abstract interpretation is
also sometimes used as a formal framework in which abstractions to be used together with
model checking are defined (like in the case of predicate abstraction [GS97, BPR01]).

1.2 Model Checking and Infinite-State Systems

In theorem proving, static analysis, and abstract interpretation, dealing with infinite-
state systems is traditional. On the other hand, most of the research on model checking
has so-far concentrated on systems with possibly large, but finite state spaces. However,
infinite-state systems are also quite common in practice. Infinity can arise due to dealing
with various kinds of unbounded data structures such as

• push-down stacks needed for dealing with recursive procedures,

• FIFO (and other kinds) of queues of waiting processes or messages (in the latter
case, it is perhaps more natural to speak about channels),

• unrestricted counters (or integer variables), or

• dynamic linked data structures (such as lists or trees), etc.

5Sometimes, the tools developed in this area ignore much of the potential errors detected in order not to
overwhelm the user. Then, however, the approach becomes unsound—though it may still be very valuable.
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Another source of infinity may be dealing with time or other continuous variables, which
arise when analysing continuous or hybrid systems. Finally, a need to deal with infinite
state spaces may arise also due to various kinds of parameters (such as the maximum value
of some variable, the maximum length of a queue, or the number of processes in a system)
when one wants to verify the given system for any value of the parameters. In the last
case, to be more precise, we are dealing with infinite families of systems (which themselves
may be finite-state or infinite-state). Nevertheless, the need to verify the system for any
member of the family leads anyway to infinite-state verification as the union of the state
spaces of all the family members is infinite.

Consequently, techniques applying model checking in the area of infinite-state systems
have begun to appear as well. Moreover, there also appear various combinations, mutual
influence, and inspiration between model checking approaches and theorem proving, static
analysis, and abstract interpretation.

Approaches to Model Checking of Infinite-State Systems. One possibility of
verifying infinite-state systems via model checking is to use the so-called cut-offs. Cut-offs
are such bounds on the various infinite resources that when one successfully verifies a given
system up to the cut-off bounds, the verified properties are guaranteed to hold even when
the bounds are removed. Cut-offs are one of the techniques that we discuss in more detail
in this work. Basically, if one can find a suitable cut-off, infinite-state verification may be
reduced to a finite-state one.

Another possibility is using various kinds of (finite-range) abstractions. The abstrac-
tions considered in the literature range from predicate abstraction [GS97] (indeed, when
we use a finite number of Boolean predicates, the abstract state space becomes finite re-
gardless of the original domains of the concrete state variables) to various specialised
abstractions proposed, for instance, for verifying parameterised networks of processes
[ID96b, BBLS00, PXZ02].

Further, one may use symbolic model checking based on some kind of a finite repre-
sentation of infinite sets of states by means of logics, automata, grammars, etc. Among
successful symbolic verification methods, we can count the so-called regular model check-
ing, which is another of the approaches that we study in detail in the following. Regular
model checking is based on representing infinite, but regular sets of states by finite-state
automata. Its advantages are that it is (usually) fully automated and quite generic. An-
other successful symbolic verification is then, for instance, the symbolic model checking
approach based on the so-called zones [Dil89, HNSY94] that has turned out to be very
successful in the domain of model checking real-time systems modelled by timed automata
[AD94, HNSY94].

Yet another group of often studied approaches is based on various ways of automated
induction—cf., e.g., [WL89, KM95, MQS00, LHR97, CR00, PRZ01]. Many of these works
use the so-called network invariants which provide an abstraction of a composition of any
number of processes. It then suffices to use model checking to verify that the behaviour of
a single process is covered by the network invariant, a composition of the network invariant
and a process is also covered by the invariant, and the invariant satisfies the given property
of interest.

Decidability Issues. Of course, when dealing with infinite-state systems, one very
quickly reaches undecidability of the verification problems. The same naturally holds for
parametric verification [AK86]. Therefore, most of the model checking methods proposed
in this area are either not fully automated, or they are semi-algorithmic heuristics, i.e.,
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they do not guarantee termination, or they allow an indefinite answer of the type “don’t
know” to be returned. However, even such techniques may often prove quite successful on
many practical examples.

Moreover, not all of the problems are undecidable. Decidability has been proved, e.g.,
for model checking of the full modal µ-calculus over push-down systems [Wal96, BS97]
(for a fixed LTL formula, the problem is even polynomial [BEM97, FWW97, EHRS00]).
Reachability, safety, inevitability, and (fair) termination are decidable over lossy FIFO
channel systems [Fin94, CFI96b, AJ96a, MS02]. None of them, however, is decidable in a
primitive recursive time [Sch02a] (and some other verification problems, including recur-
rent reachability, and hence, liveness, are undecidable [AJ96b]). Further, many verification
problems of timed automata are decidable due to the region equivalence [AD94, ACD93]
(with reachability checking being PSPACE-complete in this domain). There are also a
number of positive decidability results for various dynamic networks of concurrent pro-
cesses with recursion [May00a, BMOT05], and so on. Even in such cases, it may, however,
be sometimes more advantageous to use semi-algorithmic heuristic approaches that may
turn out to deliver more efficient results in practice.

1.3 Contents and Context of the Thesis

In this work, we discuss two of the above mentioned approaches—namely, the use of cut-
offs and the regular model checking method. Into these two areas, we have concentrated
most of our recent research. We present (some of) the results that we obtained in this
area together with an overview of other existing proposals.

An interesting point to note about the two techniques we discuss is that they are quite
complementary: Cut-off results are often specialised and may allow one to transform a
particular infinite-state verification problem to a finite-state one. On the other hand,
regular model checking is generic and usable even if no reduction to finite-state model
checking can be done.

As a part of our original contribution, we, in particular, present a series of cut-
off results for verification of parameterised networks of processes with shared resources
[BHV02, BHV03]. Our contribution further includes a proposal of a combination of the
regular model checking approach with automated abstraction yielding the so-called ab-
stract regular model checking technique [BHV04]. This framework is generalised to deal-
ing with tree languages [BHRV05, BHRV06a] as well. Further, we have proposed, and
we present here, an original technique of using abstract regular model checking for verifi-
cation of programs with dynamic linked data structures [BHMV05]. As an alternative to
abstract regular model checking, we have also studied an original application of language
inference methods in regular model checking [HV04, HV05]. Finally, as one of the existing
techniques trying to go beyond the use of regular languages, we discuss our proposal of a
new class of tree automata with size constraints and its application to the verification of
programs manipulating balanced tree structures [HIV05, HIV06].

In order not to make the thesis too broad, we have chosen not to discuss in detail all of
our recent works despite that some of them are also related to verification of infinite-state
systems (and, in particular, various kinds of symbolic verification) [EV05, ČEV05, ČEV06,
BBH+06a, BHRV06b]. We, however, briefly discuss these approaches in the appropriate
parts of the thesis.

Most of the original results that we present here were achieved in a tight and fruit-
ful cooperation with our foreign partners. In particular, we acknowledge our coopera-
tion with Ahmed Bouajjani and Peter Habermehl from LIAFA, Université Paris 7—Denis
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Diderot/CNRS and Radu Iosif from VERIMAG, Université Joseph Fourier/CNRS/INPG,
Grenoble. Moreover, several Ph.D. students have participated on the work including Pierre
Moro from LIAFA and Adam Rogalewicz, Pavel Erlebach, and Aleš Smrčka (with whom
we are, e.g., currently trying to apply abstract regular model checking to a parameterised
verification of some hardware components) from FIT. The three latter students are super-
vised by prof. M. Češka while the author of the thesis is their co-supervisor.

The thesis is based on extended versions of papers originally published at renowned
conferences and in journals. The results are accompanied with a significantly extended
discussion of other existing works and presented in a unified framework.

1.4 Structure of the Thesis

In the following chapters, we always start with an introduction that is more specialised
to the technique being presented than the general introduction presented here. Then, we
explain the basic principles of the presented technique and give an overview of the results
existing in the given area. Subsequently, we present in detail our original results followed
by some concluding remarks specific for the appropriate area.

In particular, in Chapter 2, we discuss the cut-off technique and our results in this
area. Chapter 3 speaks about regular model checking with a stress put on abstract regular
model checking and the use of language inference for regular model checking. Further, in
Chapter 4, we discuss the area of verifying programs with dynamic linked data structures
and our proposal of using (abstract) regular model checking in this area. In Chapter 5,
we discuss a generalisation of (abstract) regular model checking to (abstract) regular tree
model checking. Finally, in Chapter 6, we touch upon the existing approaches trying to
use more than regular languages for symbolic model checking and we describe our class
of tree automata extended with size constraints and their use for verification of programs
manipulating balanced tree structures.

We close the thesis by a general summary and a future work overview in Chapter 7.
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Chapter 2

Cut-offs on Parameterised
Networks of Processes

The technique of finding cut-offs is one of the approaches often successfully used for veri-
fication of parameterised systems (and/or systems with some sort of unbounded resources
like the length of communication queues, the amount of available dynamic memory, the
size of counters, etc.). Given a class of properties and a class of systems to be checked,
the principle of the cut-off technique is to provide a bound on the involved parameters
(unbounded resources) such that to check the given property over the given system (or
a family of systems in the case of parameterisation), it suffices to check the property in
a setting where the parameters (originally unbounded resources) are bound to a certain
finite value (or a finite set of values).

An advantage of the cut-off approach is that if one manages to come up with a cut-off
in some setting (especially when the cut-off happens to be small or moderate), it allows
one to turn an infinite-state verification problem to a finite-state one. Then, one can
re-use some of the various efficient tools already developed for verification of finite-state
systems instead of using the usually much heavier methods available for a direct work
with infinite-state systems. On the other hand, a disadvantage of the cut-off technique is
that the cut-offs are usually very specific to a particular class of systems and properties,
and it is not easy to adapt them for other settings. Thus, we can say that when one is
facing a parameterised and/or infinite-state verification problem, it is worthwhile trying
to reduce it to a finite-state one via the cut-off technique. If this is not successful (or the
cut-off obtained is too big), one can then proceed to the use of other methods.

Note that the cut-off technique may also be used when model checking a finite, but
large system by reducing the number of processes (or resources) to deal with.

In the literature, the term a “small model” is sometimes used instead of speaking
about a cut-off. The technique is not discussed primarily only in the framework of formal
verification but also in other contexts. For example, it is sometimes used when providing
a decision procedure for a logic with variables ranging over some unbounded domain (as,
for instance, in [PRSS02, EVW97], ). Such results can then often be used back in the area
of formal verification of infinite-state or parameterised systems.

Here, we concentrate on the direct use of cut-offs for formal verification of parame-
terised networks of processes. Note, however, that even in this case, the cut-off is not
always expressed directly on the number of processes to be considered. Sometimes, the
cut-off is phrased in terms of the maximum length of a behaviour to be considered or
the maximum number of verification steps to be performed. In such cases, the number
of processes may be limited implicitly, e.g., by starting with zero processes and counting
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the addition of a process as one step [GS92], or it may be completely abstracted away by
remembering only whether at least one process is at some control location or not [EN96].
Having a cut-off with the same size phrased on the number of verification steps is of course
better than having it phrased on the number of processes. This is because in the latter
case, one has still to generate and explore the state space of the system with the given
number of processes which is usually exponential in the number of processes.

Below, we first summarise some of the best known results obtained in the area of
using cut-offs for verifying parameterised networks of processes. Subsequently, we explain
in detail our contribution to this area. Our original results concentrate on verification
of parameterised networks of processes with sets of shared resources being available via
certain FIFO-based access policies. These results were first published in [BHV02, BHV03],
and the full version of the paper is currently submitted to a journal [BHV06].

2.1 Cut-off Results On Parameterised Process Networks

2.1.1 A Single Control Process and Many Identical User Processes

An early work using cut-offs for automatic verification of parameterised networks of pro-
cesses is [GS92]. In this paper, the basic considered model describes families of systems
with two kinds of processes: a single finite-state “control” process and an arbitrary num-
ber of identical finite-state “user” processes. The processes perform two kinds of actions:
either “silent” internal transitions or CCS-like synchronised transitions. The synchro-
nisation is based on having a finite set of communication symbols Σ and a set of their
complements Σ. Two processes then synchronise when one of them performs a c transition
whereas the other one performs a c transition (here, c ∈ Σ and c ∈ Σ are complementary
symbols). The paper provides a doubly-exponential decision procedure for verification of
LTL properties of single processes (i.e., speaking either about the control process or a user
process), which is based on a cut-off on the length of the behaviours to be considered. The
result can be used for verifying mutual exclusion too.

The paper then also considers various modifications of this basic setting. For verifica-
tion of LTL\X properties1 of single processes on fair runs, a technique using reachability
of vector addition systems is used. A modification of this technique can be used for check-
ing deadlockability as well. An algorithm based on integer linear programming, which is
polynomial in the size of process descriptions, is then shown for the case of having only
an arbitrary number of identical user processes (perhaps structured to some classes but
with no distinguished unique process). On the other hand, it is shown that the verification
problem for the basic setting described in the previous paragraph becomes undecidable
when one allows process quantification in LTL formulae (i.e., when allowing to specify
that certain propositions should hold for certain processes described via quantified pro-
cess variables instead of always referring to the properties of a single process—we will
formally define such a logic later on).

In [EN96], families of systems consisting again from a single finite-state control process
and an arbitrary number of identical user finite-state processes are considered. Unlike in
[GS92], the processes run synchronously—in every global transition, every process fires its
local transition, and the processes communicate via some sort of sharing of information
about their states. In particular, transitions of processes have guards of the form ∃p.ϕ(p)
where ϕ is a boolean combination of propositions over the state of the control process

1LTL\X denotes LTL without the next-time operator X. The exclusion of this operator is quite common
when using cut-off results. The reason is that X allows one to—in some sense—count the processes.
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and over the state of the p-th user process. (The model was used to describe and verify,
e.g., a certain bus arbitration protocol.) The work proposes an exponential-time cut-off-
based procedure for verifying tree kinds of properties: (1) Aϕ and Eϕ where ϕ is an LTL
formula over the states of the control process, (2) ∀p.Aϕ(p) and ∀p.Eϕ(p) where ϕ is an
LTL formula over the states of the control process and the states of the p-th user process,
and (3) ∀p1 6= p2.Aϕ(p1, p2) and ∀p1 6= p2.Eϕ(p1, p2) where ϕ is an LTL formula over
the states of the control process and the states of the p1-th and p2-th user processes2.
The result uses a cut-off on the length of behaviours to be explored in an abstraction of
the considered systems where one only distinguishes whether none or at least one process
is at a certain control location. Some optimisations of the result are then available for
deterministic user processes and for checking safety properties.

2.1.2 Networks of Processes Communicating by Token Passing

Another work which employs cut-offs for verification of parameterised networks of pro-
cesses is [EN95]. In particular, ring networks of identical finite-state processes are con-
sidered. Among the processes a special token is being passed in a fixed direction that
allows the processes to perform certain critical actions. The transitions of the processes
are thus divided into ones that can be performed only with the token and ones that can
be performed even without it. In addition, processes have transitions allowing them to
receive and send the token from/to their neighbours. The paper considers a version of
CTL∗\X with process quantification and obtains the following small cut-off results (more-
over, their proofs may further be used as an inspiration for obtaining cut-offs for other
similar properties if need be):

• Rings of size 2 suffice for verifying properties of the form ∀p.ϕ(p) where ϕ(p) is a
CTL∗\X formula with p being a process variable (no further variables and quan-
tification are allowed). An example of such a formula is, e.g., the eventual access
property ∀p.AG (request(p)⇒ AF using(p)).

• Rings of size 3 suffice for verifying properties of the form ∀p.ϕ(p, p+ 1).

• Rings of size 4 suffice for verifying properties of the form ∀p1 6= p2.ϕ(p1, p2). An
example of such a formula is, e.g., the mutual exclusion ∀p1 6= p2.AG¬(critical(p1)∧
critical(p2)).

• Rings of size 5 suffice for verifying properties of the form ∀p1 6= p2.ϕ(p1, p1 + 1, p2).

The token considered above does not carry any additional information. When it is
allowed to carry a value and change the value any number of times, the model becomes
Turing powerful. The case when the value can change only a finite number of times is
considered in [EK04]. For a certain form of the communicating processes (that are in
some sense deterministic, but that need not be homogeneous) and for the unidirectional
circulation of the tokens (note that there may be multiple circulating tokens here), a cut-
off b(|Ti| + |Tj |) is obtained for properties of the form Aϕ(pi, pj) or Eϕ(pi, pj) where pi,
pj are two chosen processes whose local states are monitored by the LTL\X formula ϕ.
Here, b is the maximum number of times that a token may change its value, and Ti, Tj

are sets of tokens that may be seized by processes pi, pj. The result may be generalised
for the case when there is a FIFO queue for tokens waiting in a process for handling, as

2Temporal logics that allow us to explicitly speak about the local states of certain processes are often
called indexed temporal logics [ES97].
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well as for the case when a token may change the direction of its circulation, but only
when its value changes. A much more involved cut-off is then shown even for the case
of a general bidirectional communication using a single token whose value can change a
finite number of times. The work is motivated by applications, e.g., in verification of
distributed algorithms (like the leader election) where often a circular topology is used
and the messages being exchanged change only a finite number of times.

Another recent work that explores possibilities of using cut-offs in networks of pro-
cesses communicating by token passing is [CTTV04]. In particular, the work considers
networks of homogeneous finite-state processes that are interconnected in an arbitrary
oriented graph. The processes have token-independent and token-dependent transitions.
The latter can be fired only if a process posses the only token circulating in the network.
The token can be sent and received along the arcs in the network topology, and it is sup-
posed that every processes infinitely many times receives and releases the token. It is then
proved that model checking of any k-indexed LTL\X property over an arbitrarily large
network of an arbitrary topology can be reduced to model-checking at most 3k.(k−1)2k

networks with at most 2k processes (for the important class of formulae with two tracked
processes, this means verifying up to 36 networks with up to 4 processes). The result gives
the same cut-off for families of networks with some topology, though it is not effective from
the point of view of saying how to find the particular networks to verify. The work further
shows that an analogical cut-off cannot be found for indexed CTL\X.

2.1.3 Networks of Processes with Disjunctive or Conjunctive Guards

The work [EK00] considers parameterised networks of finite-state processes which are clas-
sified into a finite number of classes. The processes communicate via disjunctive or con-
junctive guards over the states of the present processes. A disjunctive guard allows a
process to test whether there is a process which is in some local control state. A conjunc-
tive guard allows a process to test whether all processes are in some of selected local states.
Three kinds of properties are considered: (1) for all processes p of a single class, Aϕ(p) or
Eϕ(p), (2) for all processes p1 6= p2 of a single class, Aϕ(p1, p2) or Eϕ(p1, p2), and (3) for
any process p1 of one class and any process p2 of another class, Aϕ(p1, p2) or Eϕ(p1, p2).
Here, ϕ is an LTL\X formula speaking about local states of the quantified processes. The
work obtains cut-offs requiring at most |Pc| + 3 or 2|Pc| + 1 processes from every class c
to be taken into account (|Pc| is the size of the finite control of processes from class c)
for disjunctive or conjunctive guards, respectively. For properties ranging over all paths
for disjunctive guards and for properties ranging only on finite or only infinite paths in
the case of conjunctive guards, the cut-offs are optimised to requiring only a small, fixed
number of processes (up to three) from each class (sometimes only two or three processes
are needed in total) yielding a really efficient, polynomial time verification procedure.

2.1.4 Process Networks with Resource Sharing

In [EK02], the authors consider networks of heterogeneous finite-state processes communi-
cating via competing for resources shared between pairs of processes. The processes always
perform some resource-independent steps, then acquire certain resources, perform some
resource-dependent transitions, release all the resources, and repeat this behaviour. All
of the resources attached to a process must always be acquired, they must be acquired
wrt. a certain partial order on the resources, and once some resources are acquired, they
cannot be released before all resources are acquired. The work shows a cut-off down to two
processes for safety properties of the form Efin/Afinϕ(p1, p2) where Efin/Afin range over
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finite paths and ϕ is an LTL\X formula for fixed processes p1, p2. A cut-off down to three
processes is shown for liveness properties over unconditionally fair paths (where every
process must keep running forever) for a fixed pair of processes and LTL\X formulae. For
the case of ring-shaped networks, a cut-off down to (at most) five processes is then shown
for proving deadlockability (whereas the general case is shown to be NP-complete).

In Section 2.2, we present in detail our own results obtained in the area of verifying
parameterised process networks with shared resources. We, however, consider a different
class of systems (with resources shared by all processes, with a prioritised FIFO access
to resources, etc.) as well as a bit different class of properties (including liveness under
weak/strong fairness).

Another result that relies partially on cut-offs is then [KIG05] where verification of
an arbitrary number of concurrent, recursive threads communicating via locking shared
resources is considered. The threads are modelled as push-down systems with a finite
control. It is shown that for single-index LTL\X properties over finite as well as over
infinite behaviours, it suffices to consider a single thread. For doubly indexed properties,
dealing with two threads is shown sufficient. As the threads are push-down systems, the
obtained verification problem for two tracked processes is still undecidable in general.
However, it is shown to be decidable for the case of having only nested locks (where it
suffices to explore two augmented threads in isolation and then combine the obtained
results).

2.1.5 Cache Coherence Protocols

In [EK03], a set of methods is presented for formal verification of cache coherence protocols
allowing them to be proved correct for a parametric number of caches. A cut-off result
is presented for one of the classes of such protocols, namely the so-called invalidation-
based snoopy protocols, i.e., protocols that on every write operation invalidate the written
block in all caches other the one in which the write operation happened. The paper
presents a cut-off down to seven processes (caches) for verification of properties of the
form ∀p1 6= p2.Aϕ(p1, p2) and ∀p1 6= p2.Eϕ(p1, p2) where ϕ is an LTL\X formula over the
local states of p1, p2, and E/A range either over all finite behaviours, over all behaviours,
or over all unconditionally fair behaviours.

2.1.6 Systems with Parameterised-Size Arrays

An interesting work on the verification of parameterised systems that also relies (at least
partially) on cut-offs is [APR+01]. The work builds upon the deductive verification ap-
proach where one tries to find an inductive invariant ϕ such that ϕ is implied by the initial
condition of the considered system, ϕ is inductive (i.e., if it holds before a transition of
the system, it holds after the transition too), and ϕ implies the property to be checked.
The authors provide a heuristic to automatically derive the inductive invariant (based on
generalising the behaviour of a bounded-size system), and they provide a cut-off result
allowing one to automatically check all the described verification conditions.

The considered systems are described by a finite number of boolean variables, parameter-
ised-size integers, and arrays with parametric bounds containing either boolean values,
parameterised-size integers, or other parameterised arrays. (A parameterised number of
processes may easily be encoded via a parameterised array containing the local states of
the particular processes.) The property to be checked is supposed to be an invariant of
the form ∀x.ψ(x). The synthesised inductive invariant has the same form. The transition
relation is of the form ∃y ∀x.ρ(y, x). The atomic formulae allowed are correctly-typed
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comparisons between variables and array references (the framework, moreover, allows one
to encode “+1” and “+1 mod N” constraints too). The work proves a cut-off for checking
validity of the considered formulae, which is polynomial in the number of variables in the
formulae and in the system.

2.2 RTR Families: Parametric Resource Sharing Networks

We now present our own results from the area of using cut-offs for verification of param-
eterised systems [BHV02, BHV03, BHV06]. In particular, the results concern verification
of parameterised networks of processes with resource sharing.

Managing concurrent access to shared resources is a fundamental problem that appears
in many contexts, e.g., operating systems, multithreaded programs, control software, etc.
The critical properties to ensure are typically (1) mutual exclusion when exclusive access
is required, (2) absence of starvation (a process that requires a resource will eventually
get it), and (3) absence of deadlocks.

Many different instances of the above problem can be defined depending on the as-
sumptions on the allowed actions for access to resources and the policies for managing the
access to these resources.

In our work, we consider systems with a finite number of resources shared by a paramet-
ric number of identical processes. These processes can require a set of resources, get access
and use the requested resources, and release the used resources. The requests can be of a
low-priority or a high-priority level. The access to the resources is managed by a locker
according to a FIFO-based policy taking into account the priorities of the requests—i.e.,
a waiting high-priority request can overtake waiting low-priority ones. As a special case
allowing for an optimised treatment, we then examine the situation when no high-priority
requests are used, and the locker behaves according to the pure FIFO discipline.

For an abstract description of the concerned systems, we define a model based on
extended automata with queues recording the identities of the waiting processes for each
resource. Then, we address the verification problem for families of such systems with
an arbitrary number of processes (called RTR families where RTR stands for request-
take-release) against formulae of the temporal logic LTL\X extended with global process
quantification. We consider two interpretation domains for the logic: the set of finite
behaviours (which is natural for safety properties), and the set of fair behaviours (in order
to cover liveness properties). In addition, we consider the parametric verification problem
of process deadlockability too. Thus, we cover all the three most important classes of
properties for the given application domain.

The two obstacles involved in the considered systems (parameterisation and having
multiple queues over an unbounded domain of process identifiers) complicate the use of
any of the known methods for verification of infinite-state and/or parameterised systems.
Using cut-offs appears to be the easiest approach here. When establishing our cut-off
results, we consider the question whether it is possible to find cut-off bounds that do not
depend on the structure of the involved processes and the formula at hand, but only on the
number of resources and the number of processes quantified in the formula. Indeed, these
numbers are relatively small, especially in comparison to the size of the process control
automata.

We show that for RTR families where the pure FIFO resource management is used
(i.e., no high-priority access to resources is required), parametric verification of finite
as well as fair behaviour is decidable against all LTL\X formulae with global process
quantification. The cut-off bound in the finite behaviour case is the number of quantified
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processes, whereas it is this number plus the number of resources in the fair behaviour
case. These bounds lead to practical finite-state verification. Furthermore, we show that
the verification of process deadlockability is decidable too (with the cut-off bound being
equal to the number of resources).

On the other hand, for the case of dealing with RTR families that distinguish low-
priority and high-priority requests, we show that—unfortunately—structure-independent
cut-offs do not exist in general neither for the interpretation of the considered logic on
finite nor fair behaviours. However, we show that even for such families, parametric
verification of finite behaviour is decidable, e.g., against reachability/invariance formulae,
and parametric verification of fair behaviour is decidable against formulae with a single
quantified process. In this way, we cover, e.g., verification of the (for the given application
domain) key properties of mutual exclusion and absence of starvation. For the former case,
we even obtain a structure-independent cut-off equal again to the number of quantified
processes. For verification of fair behaviour against single process formulae, no general
structure-independent cut-off can be found, but we provide a structure-dependent one,
and in addition, we determine a significant subclass of RTR families where a structure-
independent cut-off for this particular kind of properties does exist. Finally, we show
that process deadlockability can be solved in the case of general RTR families via the
same (structure-independent) cut-off as in the case of the families not using high-priority
requests.

Further, we show that although the queues in RTR families are not communication
queues, but just waiting queues, and the above decidability results may be established,
the model is still quite powerful, and decidability may easily be lost when trying to deal
with a bit more complex properties to verify. We illustrate this by proving that parametric
finite-behaviour verification becomes undecidable (even for families not using high-priority
requests) for LTL\X extended with the notion of local process quantification [ES97], which
allows one to examine different processes in different encountered states.

Let us note that the work we present here was originally motivated by an interest of
Ericsson in having a more complete verification method for verifying the use of shared
resources in some of their ATM switches than just using finite-state model checking to
verify some isolated instances of the involved parameterised verification problems as in
[AED02]. However, the operations for access to shared resources and the resource man-
agement policies that we consider are quite natural in general in concurrent applications
dealing with shared resources.

Out of the other cut-off approaches presented in Section 2.1, the closest one to our
result is [EK02]. However, both the system model and the employed proof techniques
differ. As we have said in the previous section, the processes in [EK02] need not be
identical, the number of resources is not bounded, but, on the other hand, only two fixed
processes may compete for a given resource, and their requests are served in a random
order (there are no FIFO queues in [EK02]). Moreover, some of the properties to be
verified we consider here are different from [EK02] (e.g., we deal with the more realistic
notion of weak/strong fairness compared to the unconditional one used there, etc.).

Outline of the rest of the section: Below, we first formalise the notion of RTR families
and define the specification logic we use. Then, we present our cut-off results for finite and
fair behaviour and process deadlockability as well as the undecidability result. We mostly
provide proof ideas of the presented results only—the complete proofs can be found in the
extended version of [BHV03] that is available over the Internet.
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2.2.1 RTR Families

The Model of RTR Families

Processes in systems of RTR families are controlled by RTR automata. An RTR automaton
over a finite set of resources is a finite automaton with the following kinds of actions joint
with transitions: skip (denoted by τ—an abstract step not changing resource utilisation),
request and, when it is the turn, take a set of resources at the low- or high-priority level
(rqt/prqt), and, finally, release a set of resources (rel).

Let us, however, stress that we allow processes to block inside (p)rqt transitions3 while
waiting for the requested resources to be available for them. Therefore, a single (p)rqt
transition in a model semantically corresponds to two transitions, which we denote as
(p)req (request a set of resources) and (p)take (start using the requested resources when
enabled to do so by the locking policy).

Definition 2.2.1 An RTR automaton is a 4-tuple A = (R,Q, q0, T ) where R is a set
of resources, Q is a set of control locations, q0 ∈ Q is an initial control location, and
T ⊆ Q × A × Q is a transition relation over the set of actions A = {τ} ∪ {a(R′) | a ∈
{rqt, prqt, rel} ∧ R′ 6= ∅ ∧ R′ ⊆ R}. The sets R, Q, T , and A are nonempty, finite,
pairwise disjoint, and disjoint with N.

An RTR family F(A) over an RTR automaton A is a set of systems Sn consisting of
n ≥ 1 identical processes controlled by A and identified by elements of Pn = {1, ..., n}. (In
the following, if no confusion is possible, we usually drop the reference to A.) We denote
as RTR\P families the special case of RTR families whose control automata contain no
high-priority request actions.

Configurations

For the rest of the section, let us suppose working with an arbitrary fixed RTR family F
over an automaton A = (R,Q, q0, T ) and with a system Sn ∈ F .

To make the semantics of RTR families reflect the fact that processes may block in
(p)rqt actions, we extend the setQ of “explicit” control locations toQt containing a unique
internal control location qt for each transition t ∈ T based on a (p)rqt action. Furthermore,
let Tt be the set obtained from T by preserving all τ and rel transitions and splitting
each transition t = (q1, (p)rqt(R

′), q2) ∈ T to two transitions t1 = (q1, (p)req(R
′), qt) and

t2 = (qt, (p)take(R
′), q2).

We define the resource queue alphabet of Sn as Σn = {s(p) | s ∈ {r, pr, g, u}∧ p ∈ Pn}.
The meaning is that a process has requested a resource in the low- or high-priority way,
it has been granted the resource, or it is already using the resource. A configuration c of
Sn is then a function c : (Pn → Qt) ∪ (R→ Σ∗

n) that assigns the current control locations
to processes and the current content of queues of requests to resources. Let Cn be the set
of all such configurations.

Resource Granting and Transition Firing

We now introduce the locker function Λ implementing the considered FIFO resource man-
agement policy with low- and high-priority requests. This function is to be applied over
configurations changed by adding/removing some requests to/from some queues in order

3We use (p)rqt when addressing both rqt as well as prqt transitions.
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to grant all the requests that can be granted wrt. the given strategy in the given situa-
tion. Note that in the case of RTR\P families, the resource management policy can be
considered the pure FIFO policy.

A high-priority request is granted iff none of the needed resources is in use by or granted
to any process, nor it is subject to any sooner raised, but not yet granted, high-priority
request. A low-priority request is granted iff the needed resources are not in use nor
granted and they are not subject to any sooner raised request nor any later raised high-
priority request that can be granted at the given moment. (High-priority requests that
currently cannot be granted do not block sooner raised low-priority requests.) Formally,
for c ∈ Cn, we define Λ(c) to be a configuration of Cn equal to c up to the following for
each r ∈ R:

1. If c(r) = w1.pr(p).w2 for some p ∈ Pn, w1, w2 ∈ Σ∗
n s.t. c(p) = qt for a certain

t = (q1, prqt(R
′), q2) ∈ T and for all r′ ∈ R′, c(r′) = w′

1.pr(p).w
′
2 with w′

1 ∈ {r(p
′) |

p′ ∈ Pn}
∗ and w′

2 ∈ Σ∗
n, we set Λ(c)(r) to g(p).w1.w2.

(Intuitively, pr queue items can overtake r items if no pr item of the given request
is preceded by a u, g, or pr item.)

2. If c(r) = r(p).w for some p ∈ Pn, w ∈ Σ∗
n s.t. c(p) = qt for a certain t =

(q1, rqt(R
′), q2) ∈ T and for all r′ ∈ R′, c(r′) = r(p).w′ with w′ ∈ Σ∗

n, and the
premise of case 1 is not satisfied for r′, we set Λ(c)(r) to g(p).w.
(All r items of a low-priority request to be granted must be the heads of the appro-
priate queues and cannot be followed by any pr items of high-priority requests that
can be granted.)

We define enabling and firing of transitions in processes of Sn via a predicate en ⊆
Cn × Tt × Pn and a function to : Cn × Tt × Pn → Cn.

For all transitions t = (q1, τ, q2) ∈ Tt and t = (q1, a(R
′), q2) ∈ Tt, a ∈ {rel, req, preq},

we define en(c, t, p) ⇔ c(p) = q1. For each transition t = (q1, (p)take(R
′), q2) ∈ Tt, we

define en(c, t, p) ⇔ c(p) = q1 ∧ ∀r ∈ R
′ ∃w ∈ Σ∗

n : c(r) = g(p).w. Intuitively, a transition
is enabled in some process if the process is at the source control location of the transition
and, in the case of (p)take, if the appropriate request has been granted.

Firing of a transition t = (q1, τ, q2) ∈ Tt simply changes the control location mapping
of p from q1 to q2, i.e., to(c, t, p) = (c \ {(p, q1)}) ∪ {(p, q2)}.

Firing of a (p)req transition t corresponds to registering the request in the queues of
all the involved resources and going to the internal waiting location of t. The locker is
applied to (if possible) immediately grant the request. For t = (q1, (p)req(R

′), q2) ∈ Tt,
we define to(c, t, p) = Λ((c \ c−) ∪ c+) where c− = {(p, q1)} ∪ {(r, c(r)) | r ∈ R′} and
c+ = {(p, q2)} ∪ {(r, c(r).(p)r(p)) | r ∈ R′}.

For a transition t = (q1, (p)take(R
′), q2) ∈ Tt, we simply change all the appropriate

g queue items to u items and finish the concerned (p)rqt transition, i.e., to(c, t, p) =
(c \ c−) ∪ c+ with c− as in the case of (p)req and c+ = {(p, q2)} ∪ {(r, u(p).w) | r ∈
R′ ∧ c(r) = g(p).w}.

Finally, a rel transition removes the head u items from the queues of the given
resources provided they are really owned by the given process. The locker is applied
to grant all the requests that may become unblocked. Formally, for a transition t =
(q1, rel(R

′), q2) ∈ Tt, we fix to(c, t, p) = Λ((c \ c−) ∪ c+) with c− = {(p, q1)} ∪ {(r, c(r)) |
r ∈ R′ ∧ ∃w ∈ Σ∗

n : c(r) = u(p).w} and c+ = {(p, q2)} ∪ {(r, w) | r ∈ R′ ∧ w ∈ Σ∗
n ∧ c(r) =

u(p).w}.
Suppose now that a process p1 is requesting a set of resources R′ in a configuration c ∈

Cn, i.e., c(p1) = q2 for some (q1, (p)req(R
′), q2) ∈ Tt. We say that p1 and its current request
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are blocked by a process p2 on a resource r ∈ R′ in c iff c(r) ∈ Σ∗
n.s2(p2).Σ

∗
n.s1(p1).Σ

∗
n and

s1 = pr ⇒ s2 6= r. In other words, p1 is blocked by p2 on r iff p2 has a suitable item in
the queue of r that precedes some queue item of p1 in this queue. Low-priority requests
may be blocked by queue items of any type, in the case of high-priority requests, r items
are not powerful enough.

Behaviour of Systems of RTR Families

Let Sn be a system of an RTR family F . We define the initial configuration c0 of Sn to
be such that ∀p ∈ Pn : c0(p) = q0 and ∀r ∈ R : c0(r) = ε. By a finite behaviour of Sn

starting from c1 ∈ Cn, we understand a sequence c1(p1, t1)c2...(pl, tl)cl+1 such that for each
i ∈ {1, ..., l}, en(ci, ti, pi) holds, and ci+1 = to(ci, ti, pi). If c1 is the initial configuration c0,
we may drop a reference to it and speak simply about a finite behaviour of Sn. The notion
of infinite behaviours of Sn can be defined in an analogous way. A complete behaviour is
then either infinite or such that it cannot be extended any more.

We say a complete behaviour is weakly (process) fair iff each process that is eventually
always enabled to fire some transitions, always eventually fires some transitions. More
formally, we say a complete behaviour βn is weakly fair iff for each p ∈ Pn, if βn is infinite,
and ∃i : ∀j ≥ i : ∃t ∈ Tt : en(cj , t, p) holds, then ∀i : ∃j ≥ i : ∃t ∈ Tt : cj+1 = to(cj , t, p)
holds too.

We may call a complete behaviour strongly (process) fair iff each process that is al-
ways eventually enabled to fire some transitions, always eventually fires some transitions.
Formally, a complete behaviour βn is strongly fair iff for each p ∈ Pn, if βn is infinite, and
∀i : ∃j ≥ i : ∃t ∈ Tt : en(cj , t, p) holds, then ∀i : ∃j ≥ i : ∃t ∈ Tt : cj+1 = to(cj , t, p) holds
too. However, we do not deal with strong fairness in the following because in our model,
the notions of strong and weak fairness coincide.

Lemma 2.2.1 A complete behaviour of a system Sn of an RTR family F is strongly fair
iff it is weakly fair.

Proof. (Idea) Due to the separation of requesting resources and starting to use them and
the impossibility of cancelling once issued grants of resources, a process cannot temporarily
have no enabled transitions without firing anything. 2

For a behaviour βn = c1(p1, t1)c2(p2, t2)... of a system Sn of an RTR family F , we call
the configuration sequence πn = c1c2... a path of Sn corresponding to βn and the transition
firing sequence ρn = (p1, t1)(p2, t2)... a run of Sn corresponding to βn. If the behaviour

is not important, we do not mention it. We denote Πfin
n , Πfin

n ⊆ C+
n , the set of all finite

paths of Sn and Πwf
n , Πwf

n ⊆ C+
n ∪C

ω
n , the set of all paths of Sn corresponding to complete,

weakly fair behaviours.

2.2.2 The Specification Logic

We concentrate (with the exception of process deadlockability) on verification of process-
oriented, linear-time properties of systems of RTR families. For specifying the properties,
we use the below described extension of LTL\X, which we denote as MPTL (i.e., temporal
logic of many processes). As is often the case when using cut-offs, we exclude the next-time
operator from our framework to avoid its ability to count processes.
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We extend LTL\X by global process quantification4 in a way inspired by ICTL∗ (see,
e.g., [ES97]) and allowing us to easily reason over systems composed of a parametric
number of identical processes. We also allow for an explicit distinction whether a property
should hold for all paths or for at least one path out of a given set. Therefore, we
introduce a single top-level path quantifier to our formulae. We restrict quantification
in the following way: (1) We implicitly require all variables to always refer to distinct
processes. (2) We allow only uniformly universal (or uniformly existential) process and
path quantification.

Finally, we limit atomic formulae to testing the current control locations of processes.
We allow for referring to the internal control locations of request transitions too, which
corresponds to asking whether a process has requested some resources, but has not become
their user yet.

The Syntax of MPTL

Let PV , PV ∩ N = ∅, be a set of process variables. We first define the syntax of MPTL
path subformulae, which we build from atomic formulae at(p, q) using boolean connectives
and the until operator. For V ⊆ PV and p ∈ V , we have:

ϕ(V ) ::= at(p, q) | ¬ϕ(V ) | ϕ(V ) ∨ ϕ(V ) | ϕ(V ) U ϕ(V )

As syntactical sugar, we can then introduce in the usual way formulae like tt, ff, ϕ(V )∧
ϕ(V ), 2ϕ(V ), or 3ϕ(V ).

Subsequently, we define the syntax of universal and existential MPTL formulae, which
extend MPTL path subformulae by process and path quantification used in a uniformly
universal or existential way. For V ⊆ PV , we have:

Φa ::= ∀V : A ϕ(V ) Φe ::= ∃V : E ϕ(V )

In the rest of the section, we commonly specify sets of quantified variables by listing
their elements in some chosen order. Using MPTL formulae, we can then express, for
example, mutual exclusion as ∀p1, p2 : A 2 ¬(at(p1, cs)∧at(p2, cs)) or absence of starvation
as ∀p : A 2 (at(p, req)⇒ 3 at(p, use)).

The Formal Semantics of MPTL

Suppose working with a set of process variables PV . As we require process quantifiers to
always speak about distinct processes, we call a function νn : PV → Pn a valuation of PV
iff it is an injection.

Suppose further that we have a system Sn of an RTR family F . Let πn ∈ C
∗
n ∪ C

ω
n

denote a (finite or infinite) path of Sn. For a finite (or infinite) path πn = c1c2...c|πn|

(πn = c1c2...), let πl
n denote the suffix clcl+1...c|πn| (clcl+1...) of πn, respectively. (For a

finite πn with |πn| < l, πl
n = ε.)

Given a path πn of Sn and a valuation νn of PV , we inductively define the semantics
of MPTL path subformulae ϕ(V ) as follows:

• πn, νn |= at(p, q) iff πn = c.π′n and c(νn(p)) = q.

• πn, νn |= ¬ϕ(V ) iff πn, νn 6|= ϕ(V ).

4Later, we will extend MPTL by local process quantification too and show that this leads to unde-
cidability. We do not introduce local process quantification immediately in order not to complicate the
presentation of the positive decidability results.
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• πn, νn |= ϕ1(V ) ∨ ϕ2(V ) iff πn, νn |= ϕ1(V ) or πn, νn |= ϕ2(V ).

• πn, νn |= ϕ1(V ) U ϕ2(V ) iff there is l ≥ 1 such that πl
n, νn |= ϕ2(V ) and for each k,

1 ≤ k < l, πk
n, νn |= ϕ1(V ).

As for any given behaviour βn of Sn, there is a unique path πn corresponding to it,
we will also sometimes say in the following that βn satisfies or unsatisfies a formula ϕ
meaning that πn satisfies or unsatisfies ϕ. We will call the processes assigned to some
process variables by νn as processes visible in πn via νn.

Next, let Πn ⊆ C∗
n ∪ C

ω
n denote any set of paths of Sn. (Later we concentrate on sets

of paths corresponding to all finite or fair behaviours.) We define the semantics of MPTL
universal and existential formulae as follows:

• Πn |= ∀V : Aϕ(V ) iff for all valuations νn of PV and all πn ∈ Πn, πn, νn |= ϕ(V ).

• Πn |= ∃V : Eϕ(V ) iff πn, νn |= ϕ(V ) for some PV valuation νn and some πn ∈ Πn.

Evaluating MPTL over Systems and Families

Let Sn be a system of an RTR family F . Given a universal or existential MPTL formula Φ,
we say the finite behaviour of Sn satisfies Φ, which we denote by Sn |=fin Φ, iff Πfin

n |= Φ
holds. We say the weakly fair behaviour of Sn satisfies Φ, which we denote by Sn |=wf Φ,

iff Πwf
n |= Φ holds.

Next, we introduce a notion of MPTL formulae satisfaction over RTR families, in which
we allow for specifying the minimum size of the systems to be considered.5 We go on with
the chosen uniformity of quantification and for a universal MPTL formula Φa, an RTR
family F , and a lower bound l on the number of processes to be considered, we define
F , l |=a

fin Φa to hold iff Sn |=fin Φa holds for all systems Sn ∈ F with l ≤ n. Dually, for
an existential MPTL formula Φe, we define F , l |=e

fin Φe to hold iff Sn |=fin Φe holds for
some system Sn ∈ F with at least l processes. We suppose the same notions of MPTL
formulae satisfaction over families to be introduced for weakly fair behaviour too.

2.2.3 Verification of Finite Behaviour

As we have already indicated, one of the problems we examine in our work is verification
of finite behaviour of systems of RTR families against correctness requirements expressed
in MPTL. In particular, we concentrate on the parametric finite-behaviour verification
problem of checking whether F , l |=a

fin Φa holds for a certain RTR family F , a universal
MPTL formula Φa, and a lower bound l on the number of processes to be considered. The
problem of checking whether F , l |=e

fin Φe holds for a certain existential MPTL formula
Φe is dual, and we will not cover it explicitly in the following.

A Cut-Off Result for RTR\P Families

We first examine the parametric finite-behaviour verification problem for the case of
RTR\P families. Let Φa ≡ ∀p1, ..., pk : A ϕ(p1, ..., pk) be a universal MPTL formula
with k globally quantified process variables. We show that for any RTR\P family F , the
problem of checking F , l |=a

fin Φa can be reduced to a simple finite-state examination of
the system Sk ∈ F with k processes. At the same time, the processes to be monitored via

5Fixing the maximum size would lead to finite-state verification. Although our results could still be
used to simplify such verification, we do not discuss this case here.
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p1, ..., pk may be fixed to 1, ..., k. We denote the resulting verification problem as checking
whether Sk |=fin A ϕ(1, ..., k) holds. Consequently, we can say that, e.g., to verify mutual
exclusion in an RTR\P family F , it suffices to verify it for processes 1 and 2 in the system
of F with only these two processes.

Below, we first give a basic cut-off lemma and then we generalise it to the above.

Lemma 2.2.2 For an RTR\P family F and an MPTL path formula ϕ(p1, ..., pk), the
following holds for systems of F :

∀n ≥ k : Sn |=fin ∀p1, ..., pk : A ϕ(p1, ..., pk)⇔ Sk |=fin A ϕ(1, ..., k)

Proof. (Sketch) (⇒) We convert a counterexample behaviour of Sk to one of Sn by adding
some processes and letting them idle at q0. (⇐) To reduce a counterexample behaviour
of Sn to one of Sk, we remove the invisible processes and the transitions fired by them
(these processes may be shown to only restrict the behaviour of others by blocking some
resources, and so their removal does not disable any of the remaining transitions) and we
permute the processes to make 1, ..., k visible (all processes are initially equal and their
names are not significant). 2

By using Lemma 2.2.2 and properties of MPTL, we now easily obtain the above
promised result.

Theorem 2.2.1 Let F be an RTR\P family and let Φa ≡ ∀p1, ..., pk : A ϕ(p1, ..., pk) be an
MPTL formula. Then, checking whether F , l |=a

fin Φa holds is equal to checking whether
Sk |=fin A ϕ(1, ..., k) holds.

Proof. First, for all Sn ∈ F with l ≤ n < k, Sn |=fin Φa trivially holds as there are not
k distinct processes here. If Sk |=fin A ϕ(1, ..., k) holds, Lemma 2.2.2 implies Sn |=fin Φa

holds for all k ≤ n, which is what is needed or even more (for k < l). If Sn |=fin Φa holds
for l ≤ n, Sk |=fin A ϕ(1, ..., k) follows either directly for l ≤ k or from Lemma 2.2.2. 2

Inexistence of Structure-Independent Cut-Offs for RTR Families

Unfortunately, as we prove below, for families with prioritised resource management, the
same reduction as above cannot be achieved even when we allow the bound to also depend
on the number of available resources and fix the minimum considered number of processes
to one.

Theorem 2.2.2 For MPTL formulae Φa with k process variables and RTR families F
with m resources, the parametric finite-behaviour verification problem of checking whether
F , 1 |=a

fin Φa holds is not, in general, decidable by examining just the systems S1, ..., Sn ∈
F with n being a function of k and/or m only.

Proof. (Idea) In the given framework, we can check whether in some system of the RTR
family F based on the automaton from Fig. 2.1, some process p1 can request A,B before
some process p2 requests B, but the wish of p2 is granted before that of p1. As shown in
Fig. 2.1, the above happens in Sn ∈ F with n ≥ 3, but not in S2 ∈ F (the overtaking
between visible processes 2 and 3 is impossible without invisible process 1). Moreover,
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3.req(A,B)
2.preq(B)
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1.take(A)

2.ptake(B) u(1)
r(3)

r(3)
pr(2)

Figure 2.1: A scenario problematic for the application of cut-offs (the run from the left is
visualised on the RTR automaton and the appropriate resource queues)

when we start extending the B and AB branches by more and more pairs of the appropriate
(p)rqt/rel actions without extending the A branch, we exclude more than one process to
run in these branches via adding rqt(C)/rel(C) (rqt(D)/rel(D)) at their beginnings and
ends, and we ask whether p1 and p2 can exhibit more and more overtaking, we will need
more and more auxiliary processes in the A branch although k and m will not change. 2

Despite the above result, there is still some hope that the parametric finite-behaviour
verification problem for RTR and MPTL can be reduced to finite-state model checking.
Then, however, the bound on the number of processes would have to also reflect the
structure of the RTR automaton of the given family and/or the structure of the formula
being examined. We leave the problem in its general form open for future research.
Instead, we show below that for certain important subclasses of MPTL, the number of
processes to be considered in parametric finite-behaviour verification can be fixed to the
number of process variables in the formula at hand as in the RTR\P case (although the
underlying proof construction is more complex). In this way, we cover, among others,
mutual exclusion as one of the key properties of the considered class of systems.

Cut-Offs for Subclasses of MPTL

The first subclass of MPTL formulae that we consider is the class of invariance and
reachability formulae of the form

Ψa ::= ∀V : A 2ψ(V ) Ψe ::= ∃V : E 3ψ(V )

in which ψ(V ) is a boolean combination of atomic formulae at(p, q). Mutual exclusion is
an example of a property that falls into this class.

Let Ψa ≡ ∀p1, ..., pk : A 2ψ(p1, ..., pk) be an arbitrary invariance MPTL formula with
k quantified process variables. We show that for any RTR family F , the parametric
problem of checking F , l |=a

fin Ψa can be reduced to the finite-state problem of verifying
Sk |=fin A 2ψ(1, ..., k) with the number of processes fixed to k and the processes to be
monitored via p1, ..., pk fixed to 1, ..., k. As above, we first state a basic cut-off lemma,
which we subsequently generalise.

Lemma 2.2.3 For any RTR family F and any non-temporal MPTL path formula ψ(p1, ..., pk),
the following holds for systems of F :

∀n ≥ k : Sn |=fin ∀p1, ..., pk : A 2ψ(p1, ..., pk)⇔ Sk |=fin A 2ψ(1, ..., k)
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Proof. (Sketch) The case of (⇒) can be treated like in Lemma 2.2.2. In the (⇐) case,
to reduce a counterexample behaviour of Sn to one of Sk, we first leave out all invisible
processes and the transitions fired by them and permute the processes to make 1, ..., k
visible (again like in Lemma 2.2.2). This is, however, not sufficient. The obtained tran-
sition sequence may not be firable because some overtaking among visible processes (a
high-priority request is granted before a sooner issued low-priority one) may be possible
only with the help of some invisible process, which blocks the low-priority request (cf. Fig.
2.1).

We solve the above problem in such a way that we replace overtaking among processes
by postponed firing of their requests. More precisely, we postpone firing of (p)req transi-
tions to be just before firing of the corresponding (p)take transitions (or at the very end
of the run if the appropriate (p)take transition is not fired). Then, since the preserved
processes release resources as they used to and they do not block them by requests before
all originally overtaking requests are served, it can be shown that the firability of the
reduced transition sequence is guaranteed. Moreover, the behaviour is modified in a way
invisible for a reachability formula (negation of 2ψ), which ensures that we obtain the
desired counterexample in Sk. 2

Theorem 2.2.3 Let F be an RTR family and let Ψa ≡ ∀p1, ..., pk : A 2ψ(p1, ..., pk) be
an invariance MPTL formula. Then, checking whether F , l |=a

fin Ψa holds is equal to
checking whether Sk |=fin A 2ψ(1, ..., k) holds.

Proof. Similar to the proof of Theorem 2.2.1 with the use of Lemma 2.2.2 replaced by
Lemma 2.2.3. 2

We now discuss yet another subclass of MPTL that can be handled within parametric
finite-behaviour verification of RTR in the same way as above. This time, we allow any
of the MPTL operators to be used, but we exclude distinguishing whether a process is at
a location from which it can request some resources or whether it has already requested
them. In other words, we allow only the MPTL formulae for which whenever there is
a transition t = (q1, (p)rqt(R

′), q2) ∈ T , we never use at(p, q1) or at(p, qt), but at most
(at(p, q1)∨at(p, qt)). Let us denote such location-restricted MPTL formulae by Υa/Υe and
their path subformulae by υ. Using such formulae, we can, for example, check whether
some overtaking among the involved processes is possible or excluded (though not on the
level of particular requests).

Theorem 2.2.4 Let F be an RTR family and let Υa ≡ ∀p1, ..., pk : A υ(p1, ..., pk) be a
location-restricted MPTL formula. Then, checking whether F , l |=a

fin Υa holds is equal to
checking whether Sk |=fin A υ(1, ..., k) holds.

Proof. (Sketch) Similar to Lemma 2.2.3 and Theorem 2.2.3 when we take into account
that the postponed firing of requests manifests itself just by some processes staying longer
at locations q1 before going to qt for some t = (q1, (p)rqt(R

′), q2) ∈ T , which cannot be
distinguished by (at(p, q1) ∨ at(p, qt)). 2
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2.2.4 Verification of Fair Behaviour

We next discuss verification of fair behaviour of systems of RTR families against correctness
requirements expressed in MPTL. The results presented in this section can be applied for
verification of liveness properties, such as absence of starvation, of systems of RTR families.
As for finite-behaviour verification, we consider the problem of parametric verification of
weakly fair behaviour, i.e., checking whether F , l |=a

wf Φa holds for an RTR family F , a
universal MPTL formula Φa, and a lower bound l on the number of processes.

We show first that under the pure FIFO resource management, considering up to m+k
processes—with m being the number of resources and k the number of visible processes—
suffices for parametric verification of weakly fair behaviour against any MPTL formu-
lae. By contrast, for the prioritised resource management, we prove that (as in the case
of finite behaviour verification) there does not exist any general, structure-independent
cut-off that would allow us to reduce parametric verification of weakly fair behaviour
to finite-state verification. Moreover, we show that, unfortunately, the inexistence of a
structure-independent cut-off concerns, among others, also verification of the very impor-
tant property of absence of starvation. Thus, for the needs of parametric verification of
fair behaviour, we subsequently examine in more detail the possibility only sketched in
the previous section, i.e., trying to find a cut-off reflecting the structure of the appropriate
RTR automaton and/or the structure of the formula.

A Cut-Off Result for RTR\P Families

Let F be an RTR\P family with m resources and Φa ≡ ∀p1, ..., pk : A ϕ(p1, ..., pk) a
universal MPTL formula with k process variables. We show that the parametric veri-
fication problem of weakly fair behaviour for F and Φa can be reduced to a series of
finite-state verification tasks in which we do not have to examine any systems of F with
more than m+k processes. The processes to be monitored via p1, ..., pk may again be fixed
to 1, ..., k. We denote the thus arising finite-state verification tasks as checking whether
Sn |=wf A ϕ(1, ..., k) holds.

As in Section 2.2.3, we now first state a basic cut-off lemma and then we generalise
it. However, the way we establish the cut-off turns out to be significantly more complex
because lifting a counterexample behaviour from a small system to a big one is now much
more involved than previously. To ensure weak process fairness, newly added processes
must be allowed to fire some transitions, but at the same time, this cannot influence the
behaviour of the visible processes.

Lemma 2.2.4 For systems of an RTR\P family F with m resources and an MPTL path
formula ϕ(p1, ..., pk), the following holds:

∀n ≥ m+ k : Sn |=wf ∀p1, ..., pk : A ϕ(p1, ..., pk)⇔ Sm+k |=wf A ϕ(1, ..., k)

Proof. (Sketch) The case of (⇐) is similar to Lemma 2.2.2. The processes that keep
running forever in a counterexample behaviour βn in Sn will run even when we remove
some processes. To keep blocked the visible processes that eventually block in βn, we need
at most one auxiliary invisible process per resource.

(⇒) We show that we can extend a counterexample behaviour βm+k to one of Sn

by allowing the additional processes to fire some steps without influencing the visible
behaviour. We distinguish three cases:
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Case 1. If all processes block in a counterexample behaviour βm+k, then in Sn, we let
them block in the same way with the additional processes idling at q0. Subsequently, the
additional processes can also block by replaying the steps of any of the original processes.

Case 2. If all processes keep running forever in βm+k, and eventually none of them
releases any resources any more, at least one process eventually runs without using any
resources any more—m resources can be used by at most m processes. The behaviour
of such a process can be easily mimicked by the additional processes. (They first go to
the location from which they do not use any resources any more, and their behaviour can
then be arbitrarily interleaved with the behaviour of the original processes.) Otherwise,
at least one resource is always eventually released. As m − 1 resources can be used by
m− 1 processes only, a configuration in which k + 1 processes do not use any resource is
being regularly passed. At least one of these processes (say p) is invisible. In RTR\P, if p
regularly passes a configuration in which it does not use anything, it must regularly pass
a configuration in which it does not use nor request anything. The additional processes
can then mimic the behaviour of p such that p plays its original role up to completing
one loop on the configuration where it does not use nor request any resource, then the
same is done by one of the new processes (which get into the appropriate control location
before all other processes start), then another one, and so on up to the last one when the
scenario starts repeating. (As the concerned processes do not interfere with any resource
in the given state, they do not block each other nor the other processes.)

Case 3. The remaining scenario, in which some processes keep running forever and
some block in βm+k, is the most subtle one, but it may be split to several subcases that
can be shown to be solvable similarly to Case 1 or Case 2. 2

Now, the theorem generalising the lemma can be easily obtained by exploiting prop-
erties of MPTL.

Theorem 2.2.5 Let F be an RTR\P family with m resources and let Φa ≡ ∀p1, ..., pk :
A ϕ(p1, ..., pk) be an MPTL formula. Then, checking whether F , l |=a

wf Φa holds is equal to
checking whether Sn |=wf A ϕ(1, ..., k) holds for all Sn ∈ F such that min(max(l, k),m+
k) ≤ n ≤ m+ k.

Proof. (Sketch) With respect to Lemma 2.2.4, we can use a similar argument as in the
proof of Theorem 2.2.1, but as the system size of k (when we can already choose the given
number of distinct processes) and the cut-off size of m + k allowing us to generalise the
results do not coincide, we have to separately examine each Sn ∈ F where k ≤ n ≤ m+ k
and l ≤ n. 2

Let us note that examining the systems Sk (if l ≤ k) and Sm+k is necessary for the
general result presented in Theorem 2.2.5: Fig. 2.2 (a) shows the RTR\P automaton of
a simple family for which ∀p : A 32 ¬at(p, x) does not hold in Sk (i.e., S1), but it holds
in all bigger systems. Fig. 2.2 (b) shows the automaton of a simple family for which
∀p : A 3 (at(p, x) ∨ at(p, y)) does not hold in Sm+k (i.e., S3 where two processes may
deadlock and another will not even pass the first request), but it holds in any smaller
system. The question of a potential further optimisation of the presented result by not
having to examine all the systems between max(l, k) and m + k remains open for the
future, but this does not seem to be a real obstacle to practical applicability of the result.
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Figure 2.2: Two simple RTR\P automata
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rqt(B);rel(B)
........

Figure 2.3: An RTR automaton problematic for verification of absence of starvation

Absence of Structure-Independent Cut-Offs for RTR families

In verification of weakly fair behaviour of RTR families against MPTL formulae, we exam-
ine complete, usually infinite behaviours of systems of the considered families. However,
to be able to examine such behaviours, we need to examine their finite prefixes as well.
Then, Theorem 2.2.2 immediately shows that there does not exist any structure indepen-
dent cut-off allowing us to reduce the given general problem to finite-state verification.
Moreover, for the case of verifying fair behaviour of RTR families against MPTL formulae,
no structure-independent cut-offs exist even for more restricted scenarios than in finite be-
haviour verification. Namely, the query used in the proof of Theorem 2.2.2 speaks about
two processes. However, below, we give a theorem showing that for the case of paramet-
ric verification of weakly fair behaviour, no structure-independent cut-off exists even for
single-process MPTL formulae, i.e., formulae having a single process variable and thus
speaking about a single visible process. In particular, such a cut-off does not exist for a
single-process formula encoding absence of starvation.

Theorem 2.2.6 For RTR families F with m resources and the property of absence of
starvation expressed as Φa ≡ ∀p : A 2 (at(p, req)⇒ 3 at(p, use)), the problem of checking
whether F , 1 |=a

wf Φa holds is not, in general, decidable by examining just the systems
S1, ..., Sn ∈ F with n being a function of m only.

Proof. (Sketch) To witness starvation in the RTR automaton in Fig. 2.3, we need at least
x+ 3 processes with x depending on the number of transitions only. The starving process
is blocked in rqt(A). The blocking processes run in the right control branch. When such
a process releases A, another has to block it instead. A process running in the upper
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exclusive part of the right branch needs several times a help from the other processes.
However, none of the latter processes can help the former several times in a single loop
because the former process prevents the latter ones from going from one lower A-blocking
section to another. 2

A Cut-Off for Single-Process MPTL Formulae

There is no simple cut-off for verification of weakly fair behaviours of RTR families against
single-process MPTL formulae since a lot of invisible processes requesting resources with
a high priority may be needed to block a visible process. Their number depends on the
structure of the control automaton. However, this number can be bounded as shown in
this section.

To give the bound, we need some definitions. Let F(A) be an RTR family with m
resources. The set of control locations Qt of A is split into two disjoint parts: Qo (all
internal control locations and those where processes own at least one resource, without
loss of generality a process owns always the same resources at a given control location)
and Qn (the others). Let F = |Qn| (F ≥ 1 as Qn contains the initial location q0) ,
C = |2Qo | = 2|Qo| and MC = CC . Then, we can define the needed bound as BF =
CMC(MC + 1)(2FC(MC + 1))F + 2C(MC + 1) + 2m+ 1.

The key cut-off lemma below shows that if a formula is true in systems having between
m+1 and BF processes, it is also true in systems with more than BF processes. This and
Lemma 2.2.7 stating the opposite allows us to reduce the parametric verification problem
to verification of systems with up to BF processes.

Lemma 2.2.5 Let F be an RTR family with m resources and ϕ(p) an MPTL path for-
mula. Then the following holds for systems of F :

∀n ≥ BF : (∀n′,m+ 1 ≤ n′ ≤ BF : Sn′ |=wf ∀p : A ϕ(p))⇒ Sn |=wf ∀p : A ϕ(p)

Proof. (Sketch) We have to show that given a weakly fair counterexample behaviour βn in
Sn, we can obtain a weakly fair counterexample behaviour βn′ in Sn′ withm+1 ≤ n′ ≤ BF .
There are several cases to consider. The most difficult one is the case where in βn, the
visible process is blocked forever, and invisible processes are running. To make sure that
the visible process stays blocked, and the behaviour remains weakly fair, we have to
preserve some invisible processes in βn′ . As shown in Section 2.2.4, this number cannot
be bounded independently of the structure of the system. We show that less than BF

processes suffice. This is done basically in two steps.

First, we show that we can always reorder transitions fired in the counterexample
behaviour βn in such a way that the contents of queues is restricted such that it can
be deduced from the control location of the involved processes (not considering forever
blocked processes).

Second, we show that only at most BF processes are needed to obtain a behaviour
where the visible process stays blocked. To prove this we note that in a behaviour of a
system reordered as mentioned above, the number of invisible processes that can be at
control locations fromQo is bounded by one, whereas the number of invisible processes that
can be at control locations from Qn is not bounded. At the same time, the exact identity
of invisible processes is not important. Thus, the relevant information of a configuration
is which control locations of Qo are occupied (q ∈ 2Qo) and how many processes are at
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each control location of Qn (x ∈ NF ). The number of possible values of q is bounded by
C, and so it remains to show that the values of x can be bounded too.

We can suppose that the counterexample behaviour βn consists of a prefix followed by
a loop. From this loop, we can extract the relevant information on configurations. In this
way, we obtain a quotient loop behaviour which is a sequence of couples (q,x). Lemma
2.2.6 given below then provides us with a smaller quotient loop behaviour using less than
a bounded number of processes and satisfying some additional conditions. This quotient
loop can be used to obtain a weakly fair behaviour using less than BF (and at least m+1)
processes. 2

Lemma 2.2.6 If there is a quotient loop γ of length bigger than S = CMC(MC +
1)(2FC(MC +1))F +2C(MC +1) starting from a configuration (q,x), then there is a quo-
tient loop γ′ of length smaller than or equal to S starting from a configuration (q,x′).
Furthermore, (1) for all configurations (p,y) in γ′, we have |p|+

∑F
i=1 yi ≤ S, (2) a tran-

sition appearing in γ appears at least once in γ′, (3) ∀i with 1 ≤ i ≤ F , there exists
a configuration (p,y) in γ′ with yi = 0.

Proof. (Sketch) γ can be decomposed into repeating short structural loops (i.e., quotient
behaviours starting from some configuration (p,y) and going to (p,y′) where the occupied
locations in Qo are the same, but the number of invisible processes in locations Qn may
change) and some short inner quotient behaviours not containing such loops. Then, we
construct a linear equation of the form Ax = B where, intuitively, A encodes the effect
of all short structural loops on vectors y ∈ NF and B encodes the effects of short inner
quotient behaviours. The entries of both A and B are bounded. We know that there
is a solution x for this equation given by γ which indicates how many times the short
loops have to be repeated. Then, we use a lemma from the theory of Linear Integer
Programming [vZGS78] showing that if Ax = B has a solution and entries of A and B
are bounded, then it has a bounded solution from which we construct a loop behaviour of
the required size satisfying the three conditions of the lemma. 2

We now formalise the counterpart to Lemma 2.2.5. We show that if the weakly fair
behaviours of a system with more than m+1 processes satisfy some single-process MPTL
formula (it suffices when this holds for process 1 being visible), then the formula is satisfied
for the smaller systems (with at least m+ 1 processes) too. Subsequently, we use this fact
together with the above lemmas to give a complete cut-off result for single-process MPTL
formulae and weakly fair behaviour of systems of RTR families.

Lemma 2.2.7 Let F be an RTR family and ϕ(p) an MPTL path formula. Then, for
systems of F , we have: ∀n′ ≥m+ 1,n ≥ n′ :Sn |=wf A ϕ(1)⇒ Sn′ |=wf ∀p :A ϕ(p)

Proof. A straightforward analogy of the proof of (⇒) in Lemma 2.2.4. 2

Theorem 2.2.7 Let F be an RTR family with m resources and let Φa ≡ ∀p : A ϕ(p)
be a single-process MPTL formula. Then, checking F , l |=a

wf Φa is equal to checking
Sn |=wf A ϕ(1) for all Sn ∈ F with l ≤ n ≤ m+ 1 or n = BF .
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Proof. If there are Sn ∈ F with l ≤ n ≤ m+1, they are covered directly exploiting just the
interchangeability of processes. Then, for the (⇐) case, if SBF

|=wf A ϕ(1) holds, Lemma
2.2.7 implies Sn |=wf ∀p : A ϕ(p) holds for m+ 1 ≤ n ≤ BF . Using Lemma 2.2.5, this can
be extended to hold for Sn ∈ F with m + 1 ≤ n, which is what is needed or even more
(for m+1 < l). For the (⇒) case, If Sn |=wf ∀p : A ϕ(p) holds for l ≤ n, SBF

|=wf A ϕ(1)
follows either directly for l ≤ BF or from Lemma 2.2.7 (note that m+ 1 ≤ BF ). 2

Simple RTR Families

Above, we have shown that parametric verification of weakly fair behaviour of RTR families
against single-process MPTL formulae is decidable, but no really simple reduction to finite-
state verification is possible in general. We now give a restricted (yet still meaningful)
subclass of RTR families for which the problem is simpler and can be solved using a
structure-independent cut-off bound.

An RTR family F is simple if the set of control locations Qn contains only the initial
location q0: Processes start from it by requesting some resources (possibly in different
ways) and then they may request further resources as well as release some resources.
However, as soon as they release all of their resources, they go back to q0. This class is not
unrealistic; it corresponds to systems with a single resource-independent computational
part surrounded by actions using resources.

For simple RTR families, we show an improved cut-off bound using 2m+ 2 processes,
which is better than BF for F = 1. This is basically due to the fact that only m invisible
processes can be simultaneously in control locations Qo.

Lemma 2.2.8 Let F be a simple RTR family with m resources and ϕ(p) an MPTL path
formula. Then, the following holds for systems of F :

∀n ≥ 2m+ 2 :
(∀n′,m+ 1 ≤ n′ ≤ 2m+ 2 : Sn′ |=wf ∀p : A ϕ(p))⇒ Sn |=wf ∀p : A ϕ(p)

Proof. (Sketch) We only show here the case where the visible process is blocked and
some invisible processes are running. We proceed as in the proof of Lemma 2.2.5 to
get a counterexample behaviour βn with bounded queues. Since |Qn| = 1, the relevant
information of a configuration is a couple (p, x) with p ∈ 2Qo and x ∈ N. From βn (without
forever blocked processes from which we have to preserve at most m invisible ones), we can
obtain a quotient behaviour where for all pairs (p, x), we have |p|+x ≤ m+ 1. Therefore,
we need to preserve at most m+ 1 running processes. Together with the visible and the
m blocked invisible ones, this gives at most 2m+ 2. 2

Theorem 2.2.8 Let F be a simple RTR family with m resources and let Φa ≡ ∀p : A ϕ(p)
be a single-process MPTL formula. Then, checking whether F , l |=a

wf Φa holds is equal
to checking whether Sn |=wf A ϕ(1) holds for all Sn ∈ F such that l ≤ n ≤ m + 1 or
n = 2m+ 2.

Proof. As the proof of Theorem 2.2.7 using Lemma 2.2.8 instead of Lemma 2.2.5. 2

Notice that an invisible process can freely move among all locations in a subcomponent
Q′ of A which is strongly connected by τ -transitions. Therefore, Theorem 2.2.8 can be
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generalised to families whose Qn corresponds to such a component. Moreover, the same
idea can be used to optimise the general BF bound.

2.2.5 Process Deadlockability

Given an RTR family F and a system Sn ∈ F , we say that a process p is deadlocked in a
configuration c ∈ Cn if there is no configuration reachable from c from which we could fire
some transition in p. As is common for linear-time frameworks, process deadlockability
cannot be expressed in MPTL, and so since it is an important property to check for the
class of systems we consider, we now provide a specialised (structure-independent) cut-off
result for dealing with it.

Theorem 2.2.9 Let F be an RTR family with m resources. For any l, the systems Sn ∈ F
with l ≤ n are free of process deadlock iff Smax(m,2) ∈ F is.

Proof. (Sketch) A full proof of this fact is quite subtle. We can encounter scenarios
where a group of processes is mutually deadlocked due to some circular dependencies in
queues of requests, but also situations where a process is deadlocked due to being always
inevitably overtaken by processes that keep running and do not even own any resource
forever. However, when we (partially) replace overtaking by postponed firing of requests
(cf. Lemma 2.2.3), when we push blocked high-priority requests before the low-priority
ones (the former block the latter, but not vice versa), and when we preserve only the
running processes that never release all resources at the same time, we can show that we
suffice with one (primary) blocked and/or blocking process per resource. 2

Let us note that the possibility of inevitable overtaking examined in the proof of
Theorem 2.2.9 as a possible source of process deadlocks in systems of RTR families is
stronger than starvation. Starvation arises already when there is a single behaviour in
which some process is eventually always being overtaken. Interestingly, as we have shown,
inevitable overtaking is much easier to handle than starvation, and we obtain a cut-off
bound that cannot be improved even when we restrict ourselves to RTR\P families with
no overtaking.

2.2.6 RTR Families and Undecidability

Finally, we discuss an extension of MPTL by local process quantification [ES97] where
processes to be monitored in a behaviour are not fixed at the beginning, but may be chosen
independently in each encountered state. Local process quantification can be added to
MPTL by allowing ∀V ′ : ϕ(V ∪V ′) to be used in a path formula ϕ(V ) with the semantics
πn, νn |= ∀V

′ : ϕ(V ∪ V ′) iff πn, ν
′
n |= ϕ(V ∪ V ′) holds for all valuations ν ′n of PV

such that ∀p ∈ PV \ V ′ : ν ′n(p) = νn(p). Such a quantification can be used to express,
e.g., the global response property A2((∃p1 : at(p1, req)) ⇒ 3(∃p2 : at(p2, resp))), which
cannot be encoded with global process quantifiers if the number of processes is not known.
Unfortunately, it can be shown that parametric verification of linear-time finite-behaviour
properties with local process quantification is undecidable even for RTR\P families.

Theorem 2.2.10 The parametric finite-behaviour verification problem of checking whether
F , 1 |=a

fin Φa holds for an RTR\P family F and an MPTL formula Φa with local process
quantification is undecidable even when the only temporal operators used are 2 and 3 and
no temporal operator is in the scope of any local process quantifier.
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Proof. (Idea) The result can be proved by a reduction from the problem of checking
nonemptiness of languages of push-down automata (PDAs) with two push-down stacks.
Simulation of PDAs by RTR\P families is quite complex due to the following facts: The
queues in RTR are used as waiting queues, and not communication queues. They contain
just the identities of waiting processes, all the processes have identical control, no process
can manipulate queue items of other processes, and a process cannot even know whether
or not it will have to wait when requesting some resource (nor whether it had to wait for
a resource it is using now).

We only present the main ideas of the construction here. We simulate stack symbols
as well as control states of a given two-stack PDA M by processes running in different
branches of a suitably designed RTR\P automaton. (Input symbols need not be taken
into account.) For each occurrence of a state or a stack symbol in a run of M , a fresh
process is used. The processes wait for their use in the queue of a certain resource, and
parameterisation assures that there are enough of them. The stacks of M are simulated by
queues of requests. The simulation is driven by processes corresponding to encountered
control states of M . Such processes always control most of the resources used in the
construction, and thus keep other processes (representing the current content of the stacks
or just waiting for their future use) in the appropriate queues.

By blocking some resources and unblocking others, a current-state process can allow a
certain process to leave the queue simulating some PDA stack (which corresponds to the
pop operation), some processes to enter such a queue (simulating push), and some new
state process to take over its role (simulating a passage to a new control state of M). The
simulation is such that if a process not representing the right symbol or not being at the
top leaves a stack, the whole simulation deadlocks without reaching an acceptance state.
(For example, to check which symbol a process represents, we have a special resource for
each symbol, only one of these resources is unblocked, and the appropriate process has to
pass through the resource corresponding to the symbol it simulates.) Similar constructions
can be used to implement the other needed operations.

The above construction guarantees that when the involved processes do not cause a
premature global deadlock nor ignore any opportunity to exhibit some progress, their
activities correspond to a correct simulation of M . A violation of the latter condition
cannot be detected and handled in an RTR\P automaton, but we can use a suitable
MPTL formula with local process quantification to focus on runs where the processes
really exhibit the activities they are supposed to exhibit. (For example, we check whether
if some process is supposed to leave a stack, some process really leaves it, etc.) Finally,
correctness of the initialisation of the simulation and the fact that an accepting state is
reached can be checked via MPTL with local process quantification too. 2

2.3 A Summary on Cut-offs and RTR Families

We have presented the approach of finding cut-offs that may allow us to transform some
infinite-state/parameterised verification problems to (a series of) finite-state ones. If this
step is successful and leads to reasonable bounds on the involved sources of infinity and/or
parameterisation, it may yield a very efficient verification procedure exploiting the already
quite elaborated finite-state model checkers.

We have briefly overviewed a number of cut-off results on different kinds of systems:
networks of processes with a single control process and many identical user processes, net-
works of processes communicating by token passing, networks of processes with disjunctive

30



or conjunctive guards, process networks with resource sharing, cache coherence protocols,
and systems with parameterised-size arrays.

Then, we have in detail discussed our original results on verification of parameterised
process networks with resource sharing. We have defined an abstract model for a significant
class of parametric systems of processes competing for access to shared resources under a
FIFO resource management with a possibility of distinguishing low- and high-priority re-
quests. The primitives capturing the interaction between processes and resources and the
resource management policies considered are natural and inspired by real-life applications.
We have established cut-off bounds showing that many practical parametric verification
problems (including verification of mutual exclusion, absence of starvation, and process
deadlockability) are decidable in this context. The way the obtained results were estab-
lished is sometimes technically highly involved, which is due to the fact that the considered
model is quite powerful and (as we have also shown) positive decidability can easily be
lost if verification of a bit more complex properties is considered.

The structure-independent cut-offs we have presented are small and—for verification
of finite behaviour and process deadlockability—optimal. They provide us with practical
decision procedures for the concerned parametric verification problems and, moreover,
they can also be used to simplify finite-state verification for systems with a given, large
number of processes.

The structure-dependent cut-off for single-process formulae in the case of verifying
the fair behaviour of the general RTR families is quite big and does not yield a really
practical decision procedure. One challenging problem interesting for the future is to
optimise this bound. Although we know that no general structure-independent cut-off
exists, the bound we have provided is not optimal, and significantly improved cut-offs
could be found especially for particular classes of systems as we have already shown for
simple RTR families.

Another interesting problem is to improve the decidability bounds. For general RTR
families and arbitrary MPTL formulae, decidability of parametric verification of finite as
well as fair behaviour is still open. So far, we have only shown that these problems cannot
be handled via structure-independent cut-offs. Conversely, the question of existence of
practically interesting, decidable fragments of MPTL with local process quantification is
worth examining too. For the cases where no (or no small) cut-off can be found, we
could then try to find some adequate abstraction techniques and/or symbolic verification
techniques.

Finally, several extensions or variants of the framework can be considered. For example,
the questions of non-exclusive access to resources or nonblocking requests can be examined.
Moreover, several other locker policies can be considered, e.g., service in random order or a
policy where any blocked process can be overtaken. We believe that the results presented
here and the reasoning used to establish them provide (to a certain degree) a basis for
examining such questions.
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Chapter 3

Regular Model Checking

In the previous chapter, we have discussed an approach to formal verification of infinite-
state systems based on reducing their verification to (series of) finite-state verification
problems that can be handled using traditional model checking techniques. If such a step
is not possible (or not efficient), we can instead use symbolic model checking techniques
based on a suitable finite representation of infinite sets of reachable configurations. For
this purpose, one can exploit, e.g., various kinds of logic (in the literature, one can find,
for instance, approaches based on WS1S, Presburger arithmetics, predicate logic with
transitive closure, etc.). Another widely used possibility—which we concentrate here on—
is to deal with regular sets of configurations encoded by finite-state automata (as we will
see later, omega-regular and tree-regular sets are also often in use).

Regular sets have proved useful for representing sets of reachable configurations of
many different kinds of systems including systems with unbounded queues (communication
channels), push-down stacks (recursion), counters, parameterised numbers of components,
etc. Introducing a finite representation of infinite sets is, however, not the only problem
to be faced in infinite-state model checking. Further, one has to represent the set of
transitions of an infinite-state system in a finite way too. A good point for the use of regular
languages as a symbolic encoding is that often the set of transitions forms a regular relation
that may be represented, for instance, using a finite-state transducer (which is a natural
counterpart to using finite-state automata for representing sets of configurations).

Another issue is then how to explore firing sequences of the transitions. Clearly, we
cannot explore the firing sequences by firing the infinitely many transitions one-by-one.
Moreover, even if the number of the transitions is finite, an infinite non-looping firing
sequence can be obtained in an infinite-state system—consider, e.g., a simple loop adding
some element into a push-down stack. Consequently, one has to come up with a way of
exploring infinite numbers of transitions of the considered systems at once.

The methods proposed for computing the effect of possibly infinite numbers of transi-
tions over regular sets of configurations may be divided into domain-specific and generic
ones. Domain-specific methods have been proposed, for instance, for dealing with un-
bounded FIFO communication channels [BP96, BGWW97, WB98], lossy FIFO channels
[ABJ98, AJ96a, CFI96a, ABB01], integers [BP94, WB95, WB98, FL02, BB04], and push-
down systems [BEM97, FWW97, EHRS00]. Generic techniques appeared originally in the
world of parameterised networks of processes [KMM+97, KMM+01, ABJN99, BJNT00],
but they can be applied in all the mentioned areas and even in some other ones (as,
e.g., in the verification of programs with dynamic linked data structures as described in
[BHMV05] and in Chapter 4).
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In this work, we in particular concentrate on the generic approach denoted usually as
regular model checking1. Regular model checking is based on dealing with regular sets of
reachable configurations encoded by finite-state automata and regular transition relations
represented by finite-state transducers. It uses iterative applications or compositions of
the finite-state transducers accelerated in a suitable way in order to compute in a finite
time the effect of an infinite number of transitions of the system being examined, and
thus make the analysis terminate as often as possible. Note that in general, termination
cannot be guaranteed as the problems being solved by regular model checking are mostly
undecidable, and, indeed, it is easy to encode the one-step transition relation of a Turing
machine using a finite-state transducer.

Below, we first define the basic notions of the automata theory that we need, then we
explain the basic idea of regular model checking, the way it can address various verification
problems, and we provide an overview of the various acceleration approaches proposed for
making regular model checking terminate as often as possible. Then, we concentrate on
abstract regular model checking and regular model checking based on language inference,
where our original contribution—achieved in a tight cooperation with our partners—is
situated. Finally, at the end of the section, we mention several extensions of the basic
regular model checking framework.

3.1 Finite-State Automata and Transducers

A (non-deterministic) finite-state automaton is a 5-tuple M = (Q,Σ, δ, q0, F ) where Q is
a finite set of states, Σ a finite alphabet, δ : Q×Σ→ 2Q a transition function, q0 ∈ Q an
initial state, and F ⊆ Q a set of final states. The transition relation −→

M
⊆ Q×Σ∗×Q of M

is defined as the smallest relation satisfying: (1) ∀q ∈ Q : q
ε
−→
M

q, (2) if q′ ∈ δ(q, a), then

q
a
−→
M

q′, and (3) if q
w
−→
M

q′ and q′
a
−→
M

q′′, then q
wa
−→
M

q′′ for a ∈ Σ, w ∈ Σ∗. The subscript

M may be dropped if no confusion is possible. The automaton is called deterministic iff
∀q ∈ Q ∀a ∈ Σ : |δ(q, a)| ≤ 1.

The language recognised by a finite-state automaton M = (Q,Σ, δ, q0, F ) from a state
q ∈ Q is defined by L(M, q) = {w ∈ Σ∗ | ∃qF ∈ F : q

w
−→
M

qF}. The language L(M) of M

is equal to L(M, q0). A set L ⊆ Σ∗ is a regular set iff there exists a finite-state automaton

M such that L = L(M). We also define the backward language
←−
L (M, q) = {w | q0

w
−→
M

q}

and the forward/backward languages of words up to a certain length: L≤n(M, q) = {w ∈

L(M, q) | |w| ≤ n} and similarly
←−
L≤n(M, q). We define the forward/backward trace

languages of states T (M, q) = {w ∈ Σ∗ | ∃w′ ∈ Σ∗ : ww′ ∈ L(M, q)} and similarly
←−
T (M, q). Finally, we define accordingly forward/backward trace languages T≤n(M, q)

and
←−
T ≤n(M, q) of traces up to a certain length.

Given a finite-state automaton M = (Q,Σ, δ, q0, F ) and an equivalence relation ∼
on its set of states Q, M/∼ denotes the quotient automaton of M wrt. ∼, M/∼ =
(Q/∼,Σ, δ/∼, [q0]/∼, F/∼) where Q/∼ and F/∼ are the partitions of Q and F wrt. ∼,
respectively, [q0]/∼ is the equivalence class of Q wrt. ∼ containing q0, and δ/∼ is defined

such that [q1]/∼
a
−→
M/∼

[q2]/∼ iff q1
a
−→
M

q2 for [q1]/∼, [q2]/∼ ∈ Q/∼, a ∈ Σ.

1Note that the term “regular model checking” is sometimes used to cover both the generic and domain-
specific methods as long as they work with regular sets of states and transitions having the form of a
regular relation. Generic and domain-specific regular model checking can then distinguished. In this work,
we identify regular model checking with generic regular model checking as also often done in the literature.
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Figure 3.1: A model of a simple token passing protocol: (a) an automaton Init modelling
the initial set of configurations I = L(Init), and (b) a transducer τ modelling the one-step
transition relation % = %(τ)

A finite-state transducer over Σ is a 5-tuple τ = (Q,Σ, δ, q0, F ) where Q is a finite set
of states, Σ a finite input/output alphabet, δ : Q × Σε × Σε → 2Q a transition function,
Σε = Σ ∪ {ε}, q0 ∈ Q an initial state, and F ⊆ Q a set of final states. A finite-state
transducer is called a length-preserving transducer if its transitions do not contain ε. The
transition relation −→

τ
⊆ Q × Σ∗ × Σ∗ × Q is defined as the smallest relation satisfying:

(1) q
ε/ε
−→

τ
q for every q ∈ Q, (2) if q′ ∈ δ(q, a, b), then q

a/b
−→

τ
q′, and (3) if q

w/u
−→

τ
q′ and

q′
a/b
−→

τ
q′′, then q

wa/ub
−→

τ
q′′ for a, b ∈ Σε, w, u ∈ Σ∗. The subscript τ may again be dropped

if no confusion is possible.

A finite-state transducer τ = (Q,Σ, δ, q0, F ) represents the relation %(τ) = {(w, u) ∈

Σ∗ × Σ∗ | ∃qF ∈ F : q0
w/u
−→

τ
qF}. A relation % ⊆ Σ∗ × Σ∗ is a regular relation iff there

exists a finite-state transducer τ such that % = %(τ). For a set L ⊆ Σ∗ and a relation
% ⊆ Σ∗ × Σ∗, we denote %(L) the set {w ∈ Σ∗ | ∃w′ ∈ L : (w′, w) ∈ %}.

3.2 Regular Model Checking: The Basic Idea

The basic idea behind regular model checking is to encode particular configurations of the
considered systems as words over a suitable finite alphabet and to represent infinite, but
regular sets of such configurations by finite-state automata. Regular transition relations
between the configurations are then encoded using finite-state transducers.

For example, when dealing with parameterised networks of finite-state processes, each
letter in a word will typically model the state of a single process, and the length of the
word will correspond to the number of processes in the given instance of the system. To
illustrate the idea, let us consider a very simple token passing protocol. We have an
arbitrary, but finite number of processes arranged into a linear network. Each process
either does not have a token and is waiting for a token to arrive from its left neighbour,
or it has a token and then it can pass it to its right neighbour. We suppose that initially
there is only one token which is owned by the left-most process. To encode the state of
each process in our protocol, we suffice with the alphabet Σ = {N,T} where N means that
the process does not have a token whereas T means the process has a token. Then, the
set I of all possible initial configurations may be encoded by the automaton Init shown
in Fig. 3.1(a) and the single-step transition relation by the transducer τ in Fig. 3.1(b).

As for applications of regular model checking in other areas, encoding of push-down
stacks and queues as words is straightforward. Further, sets of vectors of integers may be

34



N

N

T

N

N

N T

N

N

N TN

ρ(I):

ρ(ρ(I)):

ρ(ρ(ρ(I))):

U

U

I

U

U

Figure 3.2: Divergence of the non-accelerated reachability set computation for the simple
token passing protocol %∗(I) = I ∪ %(I) ∪ %(%(I)) ∪ ...

represented, e.g., in the form of the so-called number decision diagrams (NDDs) [WB95]
where the integers are encoded in binary—in general, a different base r > 1 can also be
used—and put in parallel (i.e., in a word, we have a sequence of values of the 0th-order
bits of all the elements of the vector, then a sequence of all the 1st-order bits, the 2nd-
order bits, and so on) with negative numbers expressed using the 2’s complement.2 In
Chapter 4, we will then show how to use words and automata to encode even more complex
configurations, namely configurations of programs with dynamic linked data structures
with one selector (lists, circular lists).

Let us, however, get back to the main principles of regular model checking. Once we
have a transducer encoding the single-step transition relation % of the system that we want
to examine and an automaton encoding its set of initial configurations I, there are two
basic strategies we can follow. We can either try to directly compute the set of all reachable
configurations %∗(I), or the reachability relation %∗ of the system. The set %∗(I) can be
obtained by repeatedly applying the single-step transition relation % on the set of the so-far
reached states and by taking the union of all such sets, i.e., %∗(I) = I ∪ %(I)∪ %(%(I))∪ ....
On the other hand, the reachability relation %∗ can be obtained by repeatedly composing %
with the so-far computed reachability relation and by taking the union of all such relations,
i.e., %∗ = ι ∪ % ∪ (% ◦ %) ∪ (% ◦ % ◦ %) ∪ ... where ι is the identity relation.

The problem is that in the context of parameterised and infinite-state systems (as
opposed to finite-state systems), if we try to compute the above infinite unions using a
straightforward fixpoint computation, i.e., if we keep computing and uniting more and
more elements of the described sequences till a fixpoint is reached, the computation will
usually not terminate. We can illustrate this even on our simple token passing protocol. In
Fig. 3.2, we give the first members of the sequence I, %(I), %(%(I)), %(%(%(I))), ..., which
clearly show that a fixpoint will never be reached (the token can be at the beginning, one
step to the right, two steps to the right, three steps to the right, etc.).

In order to make the computation of %∗(I) or %∗ terminate at least in many practical
cases, we need some kind of acceleration of the computation which will allow us to obtain

2Note that if we wrote the particular members of a vector in a series, we would not even be able to
capture in a regular way that they should be the same while NDDs have a strictly greater expressive power
than the Presburger arithmetics.
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Figure 3.3: The simple token passing protocol—automata encoding: (a) the set of reach-
able configurations, and (b) the set of bad configurations

the result of an infinite number of the described computation steps at once (i.e., to in
some sense “jump” to the fixpoint). We can, e.g., notice that in our example, the token
is moving step-by-step to the right, and we can accelerate the fixpoint computation by
allowing the token to move arbitrarily far to the right in one step. If we use such an
acceleration, we will immediately reach the fixpoint shown in Fig. 3.3(a) which represents
the set of all reachable configurations of our protocol. In the literature, several different
approaches to a systematic acceleration of fixpoint computations in regular model checking
have been proposed. We will review them in Section 3.4.

Before proceeding further on to the use of regular model checking for actually verifying
some properties of the studied systems, we add a note on computing either %∗(I) or %∗.
The ability to compute %∗ may be suitable for some methods of checking certain properties
of the studied systems (especially in the case of liveness) as we will see in the next section.
However, our experimental evidence shows that computing %∗ is usually more difficult,
and it is in some sense more difficult even from a theoretical point of view. The reason
is that there are systems whose reachability relation %∗ is not regular despite both % and
%∗(I) are regular. As a simple example, imagine the single-step transition relation over
the alphabet Σ = {a, b} that can move an arbitrary long subword consisting of symbols
b by one position to the left or right when it is surrounded solely by symbols a (we will
use similar relations when handling programs with dynamic linked data structures with
one selector in Chapter 4). To express %∗, we need an ability of unbounded counting to
remember the length of the moving subword. However, when we apply %∗ to a regular I,
%∗(I) is regular.

3.3 Verification by Regular Model Checking

In the previous section, we have shown how we can compute the set of reachable configu-
rations or the reachability relation in the framework of regular model checking. We now
discuss how this can be used for checking (linear time) safety and liveness properties of
the examined systems.

It is well known that checking of safety properties can be reduced to checking that no
“bad” states are reachable in the given system—or, in more complex cases, in its product
with some safety monitor. Computing such a product is not difficult provided that the
safety monitor has the usual form of a finite-state automaton. One additional letter in
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each configuration word may then encode the current control state of the safety monitor,
and the transition relation of the monitor can be combined with the one-step transition
relation of the system. We may even add multiple safety monitors—even one for every
letter in a configuration word, which may be useful when checking safety on every process
in a parameterised network of processes. Then, if the set of bad states, for which we want
to check that they are not reachable in the given system, can be expressed as a regular
set B, we may simply compute the reachability set %∗(I) and check that %∗(I) ∩B = ∅.

For instance, in our simple token passing protocol, we can consider as bad the situation
when there is no token in the system or when there appear two or more tokens. The set
of such bad states is encoded by the finite-state automaton in Fig. 3.3(b), and it is clearly
visible that its intersection with the set of reachable states in Fig. 3.3(a) is empty, and
thus the system is safe in the given sense.

Checking of liveness properties within regular model checking is considerably more
difficult. In the world of finite-state systems, it is known that liveness can be reduced to
the repeated reachability problem (on the product of the examined system and a Büchi
automaton3 corresponding to the liveness property to be checked). A similar approach can
be taken in the context of regular model checking when the studied systems are modelled
by length-preserving transition relations, which is typical, e.g., for parameterised networks
of processes. In such cases, clearly, the only way how a system can loop is to repeatedly go
through some configuration. In a similar way as above, we can then instrument the system
by the Büchi automaton (or automata) encoding the undesirable behaviours, and check,
e.g., that %∗(I) ∩A ∩ domain(%+ ∩ ι) = ∅. Here, A is the set of accepting configurations,
ι is the identity relation, and domain is the projection of a relation onto its domain.

Note that in the above described computation, we need to compute not only the
reachability set, but also the reachability relation. However, this step may be avoided by
guessing when an accepting cycle begins, doubling every letter in the given configuration
word, then continuing the computation only on the even letters and detecting a closure
of the loop by looking for a situation when all the even letters correspond to the odd
ones—we have practically tested this technique in some of the experiments presented in
Section 3.5.5 (and it was studied more deeply in [SB05]).

A systematic framework for modelling parameterised networks of processes as well as
specifying their properties to be checked via regular model checking has been proposed
in [AJN+04]. The framework uses as a modelling as well as a specification language
LTL(MSO) that is a combination of the linear time temporal logic LTL for expressing
temporal relations and the monadic second-order logic on words for expressing properties
on configuration words. (The MSO part is used for specifying, e.g., that every process
in a configuration has to satisfy some condition, or that in the configuration there must
exist a process for which some condition holds, and so on.) The work also proposes an
automatic translation of the models as well as properties to be checked over them into an
automata framework suitable for regular model checking.

Finally, checking liveness properties for systems modelled using non-length-preserving
transition relations is even more complex than checking liveness in the length-preserving
case. This is because a non-length-preserving system may exhibit infinite behaviours in-
finitely going through an accepting state of the monitoring Büchi automaton even when
it does not loop at all—it suffices to imagine a system with a queue that keeps growing
beyond every bound. For such cases, [BLW05] has proposed an approach based on using
regular model checking for automatically computing the greatest simulation relation on

3Büchi automata are finite automata that accept infinite words by infinitely looping through some of
their accepting states (for a formal definition and the associated theory see, e.g., [PP03]).
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the reachable configurations which is compatible with the property being tracked. Then,
instead of checking that an accepting configuration can be reached that is reachable from
itself too, one checks that an accepting configuration c1 is reachable from which an ac-
cepting configuration c2 simulating c1 (i.e., allowing at least the same behaviours from
the point of view of the tracked property) is reachable. An alternative approach based
on learning fixpoints of specially proposed modalities from their generated samples using
language inference algorithms has then been proposed in [VSVA05].

3.4 Acceleration in Regular Model Checking

The methods of acceleration in regular model checking can be divided into several groups—
namely, techniques based on acceleration schemes, quotienting, extrapolation, abstraction,
and language inference (though this last technique is in principle a bit further from the
previous ones). Below, we briefly discuss the first three techniques, and then we describe
the last two in more detail in Sections 3.5 and 3.6.

3.4.1 Acceleration Schemes

The use of acceleration schemes has been proposed in [PS00]. Acceleration schemes allow
one to derive (from the original transitions of a system) meta-transitions encoding the effect
of firing some of the original transitions an arbitrary number of times. The work [PS00] has
provided three particular schemes for which it is experimentally checked that they suffice
for verification of many cases of parameterised networks of processes. In particular, the
following schemes are considered: (1) local acceleration allowing an arbitrary number of
successive transitions of a single process to be fired at once, (2) global acceleration of unary
transitions allowing any number of processes to fire a certain transition in a sequential
order within one accelerated step, and (3) global acceleration of binary transitions allowing
any number of processes to fire in a sequential order two consecutive transitions each—and
thus communicate with both of its neighbours—in one atomic step (this way, e.g., a token
in a token passing protocol can “jump” any number of positions ahead in one accelerated
step). This method has been implemented in the TLV[P] tool [Sha01].

3.4.2 Quotienting

The quotienting technique has been elaborated in the series of works [BJNT00, JN00,
Nil00, DLS01, AdJN02, AdJN03, Nil05] and implemented in the Uppsala regular model
checking tool [URM].

Let τ = (Q,Σ, δ, q0, F ) be a length-preserving transducer encoding the single-step tran-
sition relation % of a system being examined. The basic idea of the quotienting technique
stems from viewing the result of an arbitrary number of compositions of % encoded by
τ as an infinite-state “history” transducer τhist = (Q+,Σ, δhist, {q0}

+, F+) whose states4

reflect the history of their creation in terms of which states of τ have been passed at a par-
ticular location in a word in the first, second, and further transductions. Therefore, δhist

is defined such that q1q2...qn
a/a′

−→
τhist

q′1q
′
2...q

′
n for some n ≥ 1 iff there exist a1, a2, ..., an+1 ∈ Σ

such that a = a1, a
′ = an+1, and ∀i ∈ {1, ..., n} : qi

ai/ai+1
−→

τ
q′i. Intuitively, this means

that q1q2...qn
a/a′

−→
τhist

q′1q
′
2...q

′
n represents the composition of the qi

ai/ai+1
−→

τ
q′i transductions for

4We allow here a set of initial states.
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Figure 3.4: The history transducer for the token passing protocol from Fig. 3.1

i = 1, ..., n. Clearly, τhist encodes the reachability relation %+. An example of the history
transducer for the token passing example from Section 3.2 is shown in Figure 3.4.

Of course, the history transducer τhist is of no practical use as it is infinite-state. The
idea is to come up with the so-called column equivalence ' on its states—i.e., on sequences
(or, in the original terminology, columns) of states of the original transducer τ—such that
the quotient transducer τhist/' is (a) finite-state as often as possible, and at the same
time, (2) describes exactly the same relation as τhist. In [AdJN03, Nil05], a systematic
framework for designing column equivalences is proposed based on forward and backward
simulations on states.5 The basic idea here is that we can consider two states q1 and q2
of a transducer (or automaton) A equal if there are states q, q′ of A such that q backward
simulates q1 and forward simulates q2 and q′ backward simulates q2 and forward simulates
q1. Then, by collapsing q1 and q2, which joins the paths leading to q1 and continuing from
q2 in A (and vice-versa), we do not change the language of the automaton (transducer).

In [AdJN03, Nil05], one particular column equivalence is introduced. It is based on
the notion of the so-called left-copying and right-copying transducer states. A state qL of
a transducer τ is called left-copying if all paths leading from the initial state of τ to qL
contain “copying” transitions of the form a/a only. Similarly, a state qR of a transducer
τ is called right-copying if all paths leading from qR to some accepting state of τ are of
the a/a form only. In our token passing example, the state 0 is left-copying, and 2 is
right-copying.

It can be shown [AdJN03, Nil05] that for an arbitrary left-copying state qL and a
right-copying state qR, the set {qL, qR}

∗ can be partitioned into at most 7 equivalence
classes. Consequently, in the columns, one can abstract the precise number of occurrences
of left/right-copying states and also limit the number of their alternations to at most 3.
Moreover, [AdJN03, Nil05] show that after a suitable pre-processing of a transducer using
the so-called bi-determinisation (producing a transducer whose sub-automaton consisting
of left-copying states is deterministic and whose sub-automaton consisting of right-copying
states is reverse-deterministic), it is not necessary to consider columns with successive
appearances of distinct left/right-copying states—such states become either not reachable
or not productive.

5In a length-preserving transducer τ = (Q, Σ, δ, q0, F ), a state q2 ∈ Q forward simulates a state q1 ∈ Q

iff for every a, b ∈ Σ and q′1 ∈ Q such that q1

a/b
−→

τ
q′1 there is a state q′2 ∈ Q such that q2

a/b
−→

τ
q′2, q′2 forward

simulates q′1, and if q′1 ∈ F , then also q′2 ∈ F . The notion of the backward simulation is analogous.
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Figure 3.5: A column-based transducer encoding the reachability relation %+ of the token
passing protocol from Fig. 3.1

Having a suitable column equivalence, one could transform τhist into a hopefully finite
quotient transducer τhist/'. However, τhist can never be obtained. The first solution to
this problem was proposed in the older work [BJNT00]. It is based on a modification of the
subset construction that is normally used for determinisation. One starts with the state
q+0 , computes all its successors under all pairs a/a′ (which can be done by transducing
the columns by special transducers built for every a/a′ from the original transducer τ),
saturates the obtained states by ignoring the number of left-copying states, and repeats
the process from the newly generated states till a fix-point is reached.

A newer approach first proposed in [AdJN02] is to replace the history transducer by
instead computing its underapproximations τ≤k obtained by a finite number k of composi-
tions of τ . These approximations can be obtained incrementally by looking for transitions

x
a/a′

−→
τ≤k

x′ and q
a′/a′′

−→
τ

q′ and adding a new transition xq
a/a′′

−→
τ≤k+1

x′q′. Adding of new transitions

can then be combined with quotienting of the set of states (i.e., with merging of equiv-
alent states) with respect to the proposed column equivalence. This process goes on till
a fixpoint is reached. This way, in our token passing example, we obtain the reachability
relation %+ encoded by the transducer shown in Fig. 3.5.

The presented techniques can also be adapted for computing directly the reachability
set. Moreover, a sufficient condition under which the construction is guaranteed to termi-
nate is known—it is the so-called bounded local depth condition [JN00, BJNT00, Nil05].
Intuitively, this condition requires that the single-step transition relation allows each po-
sition in a word to be changed a bounded number of times only (in the token passing
example, the bound is 2, and so the construction is guaranteed to terminate).

3.4.3 Extrapolation

The extrapolation (or widening) approach to regular model checking was first proposed in
[BJNT00]. It is based on comparing successive elements of the sequence I, %(I), %(%(I)),
..., trying to find some repeated growth pattern in this sequence, and adding an arbitrary
number of occurrences of such a pattern into the reachability set.

In [BJNT00], the following technique was in particular proposed. Let L ⊆ Σ∗ be a
so-far computed reachability set and % ⊆ Σ∗×Σ∗ be a regular one-step transition relation.
One checks—e.g., by examining the structure of the finite-state automata encoding the
involved regular sets—whether there are regular sets L1, L2, and ∆ such that the following
two conditions hold:

C1. L = L1.L2 and %(L) = L1.∆.L2 and

C2. L1.∆
∗.L2 = %(L1.∆

∗.L2) ∪ L.

If the conditions hold, L1.∆
∗.L2 is added to the so-far computer reachability set.
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Intuitively, Condition C1 means that the effect of applying % is to add ∆ between L1

and L2. On the other hand, Condition C2 ensures that %∗(L) ⊆ L1.∆
∗.L2, and so we add

at least all the configurations reachable from L by iterating %. Note that the exactness of
the acceleration—i.e., whether L1.∆

∗.L2 ⊆ %
∗(L) holds too—is not guaranteed in general.

However, [BJNT00] gives a sufficient condition on % under which Conditions C1 and C2
lead to an exact acceleration. This condition in particular requires % to be a well-founded
relation not allowing any word to have an infinite number of predecessors wrt. %. In
[BJNT00], the authors also give a syntactic criterion for the so-called simple rewriting
relations that are guaranteed to satisfy this condition and that seem to appear quite often
in practice—we refer an interested reader to [BJNT00] for more details.

In our token passing example protocol, we get L = I = T.N∗ and %(L) = N.T.N∗ (cf.
Fig. 3.1(a) and 3.2). We can choose L1 = ε, ∆ = N , and L2 = T.N∗, and we immediately
get the reachability set N∗.T.N∗ from Fig. 3.3(a).

In [Tou01], the described extrapolation (widening) principle is extended to allow for
several growths in a word and for different growths in different contexts. The technique
can also be applied in a similar way to compute the reachability relation, i.e., to accelerate
the sequence of compositions of %. Moreover, [Tou01] shows how to nest the widening
principle and compute the effect of iterating a sequence of relations.

The results of [BJNT00, Tou01] on extrapolation-based acceleration have been further
improved in [BLW03]. First of all, [BLW03] proposed an improved technique for efficiently
detecting a growth pattern in reachability sets encoded by finite-state automata. The
detection is based on comparing two minimal deterministic automata A1 and A2 and
splitting A1 to a head part and a tail part and A2 to a head part isomorphic to the head
part of A1, a growth, and a tail part isomorphic to the tail part of A1.

For separating the head, growth, and tail parts, a comparison of states of A1 and
A2 wrt. the so-called forward and backward language equivalence is used. Two states—
one from A1 and another from A2—are forward language equivalent if they accept the
same languages. Two such states are backward language equivalent if their backward
languages are equal. The head parts of the automata then consist of backward language
equivalent states, and the tail parts of forward language equivalent states. The forward
language equivalence can be efficiently checked using the standard Hopcroft’s minimisation
procedure, and the backward language equivalence—taking into account the automata are
deterministic minimal—by a simultaneous search through the initial parts of the automata
identifying their isomorphic initial sub-automata.

The authors of [BLW03] then also propose a way of how to extrapolate using the de-
tected growth (i.e., how to add some “looping” arcs on the growth into the automata),
how to check that such an extrapolation is safe, and further a decidable (though relatively
expensive) sufficient preciseness criterion. Moreover, the authors observe that it is some-
times useful to compare not the immediate successors in the sequence I, %(I), %(%(I)), ...,
but the elements that appear at certain sample distances. For instance, when analysing
systems with counters encoded as NDDs, it is useful to sample at distances that are a
power of 2, which is related to the binary encoding of the integer vectors in NDDs. The
technique has been implemented on top of the LASH automata libraries [LAS].

3.5 Abstract Regular Model Checking

A crucial problem to be faced in regular model checking is the state space explosion in
automata (transducer) representations of the sets of configurations (or reachability rela-
tions) being examined. One of the sources of this problem is related to the nature of
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the previously mentioned regular model checking techniques. Typically, these techniques
try to calculate the exact reachability sets (or relations) independently of the property
being verified. However, it would often be enough to only compute an overapproximation
of the reachability set (or relation) precise enough just to verify the given property of
interest. Indeed, as we have already said in the introduction of the thesis, this is the way
large (or infinite) state spaces are often being successfully handled outside the domain
of regular model checking using the so-called abstract-check-refine paradigm often imple-
mented in the form of the counterexample guided abstraction refinement (CEGAR) loop
[GS97, BLO98, Sai00, CGJ+00a, HJMS02, DD02].

CEGAR is, e.g., embedded in tools for software model checking like Slam [BR01], Magic
[CCG+04], or Blast [HJMS03]. All these tools use the method of predicate abstraction
[GS97] where a finite set of boolean predicates is used to abstract a concrete system C
into an abstract one A by considering equivalent the configurations of C that satisfy the
same predicates. If a property is verified in A, it is guaranteed to hold in C too. If
a counterexample is found in A, one can check if it is also a counterexample for C. If
not, this spurious counterexample can be used to refine the abstraction such that the
new abstract system A′ no longer admits the spurious counterexample. In this way, one
can construct finer and finer abstractions until a sufficient precision is achieved and the
property is verified, or a real counterexample is found.

Inspired by the above considerations, we proposed in [BHV04] a new approach to
regular model checking based on the abstract-check-refine paradigm. Instead of precise
acceleration techniques, we use abstract fixpoint computations in some finite domain of
automata. The abstract fixpoint computations always terminate and provide overapprox-
imations of the reachability sets (relations). To achieve this, we define techniques that
systematically map any automaton M to an automaton M ′ from some finite domain such
that M ′ recognises a superset of the language of M . For the case that the computed
overapproximation is too coarse and a spurious counterexample is detected, we provide
effective principles allowing the abstraction to be refined such that the new abstract com-
putation does not encounter the same counterexample.

We propose here two techniques for abstracting automata, and two further abstractions
are then described in Chapter 4 where they are inspired by the special needs of using
abstract regular model checking in verification of programs with dynamic data structures.
The abstractions we discuss in this section take into account the structure of automata
and are based on collapsing their states according to some equivalence relation. The first
one is inspired by predicate abstraction. However, notice that contrary to the classical
predicate abstraction, we associate predicates with states of automata representing sets of
configurations rather than with the configurations themselves. An abstraction is defined
by a set of regular predicate languages LP . We consider a state q of an automaton M
to “satisfy” a predicate language LP if the intersection of LP with the language L(M, q)
accepted from the state q is not empty. Subsequently, two states are equivalent if they
satisfy the same predicates. The second abstraction technique we propose is then based
on considering two automata states equivalent if their languages of words up to a certain
fixed length are equal. For both of these two abstraction methods, we provide effective
refinement techniques allowing us to discard spurious counterexamples.

We also introduce several natural alternatives to the basic approaches based on back-
ward and/or trace languages of states of automata. For them, it is not always possible to
guarantee the exclusion of a spurious counterexample, but according to our experience,
they still provide good practical results.
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All of our techniques can be applied to dealing with reachability sets (obtained by
iterating length-preserving or even general transducers) as well as length-preserving reach-
ability relations.

We have implemented the different abstraction and refinement schemas in a prototype
tool and tested them on a number of examples of various types of systems including para-
metric networks of processes, pushdown systems, counter automata, systems with queues,
and—for the first time in the context of regular model checking—a program manipulating
dynamic linked data structures (in particular, we considered the common list reversion
procedure). The experiments show that our techniques are quite powerful in all the con-
sidered cases and that they are complementary—different techniques turn out to be the
most successful in different scenarios. The results are very promising and compare very
favourably with other existing tools. The success in verification of the list reversion proce-
dure then made us develop this field much further (including a more systematic encoding
of programs manipulating dynamic linked data structures and more efficient specialised
abstractions) as discussed in Chapter 4.

Before proceeding to the details of our technique, let us recall that for verification
of parameterised networks of processes, several other methods using abstractions have
been proposed [BBLS00, PXZ02]. Contrary to our approach, these methods do not pro-
vide the possibility of refinement of the abstraction. Moreover, they are specialised for
parameterised networks whereas our technique is generic.

In the rest of the section, we first introduce a simple example that we use to demon-
strate the techniques, and we also add some basic assumptions we make about the au-
tomata notions we use. Then, we introduce the general framework of abstract regular
model checking and instantiate it with two concrete abstraction principles. Next, we
discuss experiments we performed to illustrate capabilities of our method.

3.5.1 A Running Example and Some Basic Assumptions

As a simple running example capable of illustrating the different techniques we propose
for abstract regular model checking, we consider a slight modification of the token passing
protocol from Fig. 3.1. The modification consists in that each process can pass the
token to its third right neighbour (instead of its direct right neighbour). The one-step
transition relation of the system is encoded by the transducer τ in Fig. 3.6 (a). The
transducer includes the identity relation too. In the initial configurations described by
the automaton Init from Fig. 3.6 (c), the second process has the token, and the number
of processes is divisible by three. We want to show that it is not possible to reach any
configuration where the last process has the token. This set is described by the automaton
Bad from Fig. 3.6 (b).

Note that in the following, in order to shorten the descriptions, we identify a transducer
and the relation it represents and write τ(L) instead of %(τ)(L). Let ι ⊆ Σ∗ × Σ∗ be the
identity relation and ◦ the composition of relations. We define recursively the relations
(transducers) τ0 = ι, τ i+1 = τ ◦ τ i, and τ∗ = ∪∞i=0τ

i. As in our running example, we
suppose ι ⊆ τ for the rest of the section meaning that τ i ⊆ τ i+1 for all i ≥ 0.

The properties we want to check in abstract regular model checking are primarily
reachability properties. Given a system with a transition relation modelled as a transducer
τ , a regular set of initial configurations given by an automaton Init, and a set of “bad”
configurations given by an automaton Bad, we want to check τ∗(L(Init)) ∩ L(Bad) = ∅.
We transform more complicated properties into reachability by composing the appropriate
property automaton with the system being checked. In this way, even liveness properties
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Figure 3.6: A transducer τ modelling a modified token passing protocol and automata
describing the initial, bad, and reachable configurations of the system

may be handled if the transition relation is instrumented to allow for loop detection as
we have already mentioned in Section 3.3 (we will return to this in Section 3.5.5). For
our running example, τ∗(L(Init)) is shown in Fig. 3.6(d), and the property of interest
clearly holds. However, as we have also already said, in general, τ∗(L(Init)) is neither
guaranteed to be regular nor computable. In the following, the verification task is thus to
find a regular overapproximation L ⊇ τ∗(L(Init)) such that L ∩ L(Bad) = ∅.

3.5.2 The Method of Abstract Regular Model Checking

We now describe the general approach of abstract regular model checking and propose a
common framework for automata abstraction based on collapsing states of the automata.
This framework is then instantiated in several concrete ways in the following two sections
(and two further, more specialised abstractions are described also in Chapter 4). We
concentrate on the use of abstract regular model checking for dealing with reachability
sets. However, the techniques we propose may be applied to dealing with reachabil-
ity relations too—though in the context of length-preserving transducers only. (Indeed,
length-preserving transducers over an alphabet Σ can be seen as finite-state automata over
Σ×Σ.) We illustrate the applicability of the method to dealing with reachability relations
by one of the experiments presented in Section 3.5.5.

The Basic Framework of Automata Abstraction

Let Σ be a finite alphabet and MΣ the set of all finite automata over Σ. By an automata
abstraction function α, we understand a function that maps every automaton M over Σ
to an automaton α(M) whose language is an overapproximation of the one of M . To be
more precise, for some abstract domain of automata AΣ ⊆MΣ, α is a mapping MΣ → AΣ

such that ∀M ∈MΣ : L(M) ⊆ L(α(M)). We call α finitary iff its range AΣ is finite.

Working conveniently on the level of automata, given a transition relation expressed
as a transducer τ over Σ and an automata abstraction function α, we introduce the ab-
stract transition function τα as follows: For each automaton M ∈MΣ, τα(M) = α(τ̂ (M))
where τ̂(M) is the minimal deterministic automaton of τ(L(M)). Now, we may itera-
tively compute the sequence (τ i

α(M))i≥0. Since we suppose ι ⊆ τ , it is clear that if α
is finitary, there exists k ≥ 0 such that τk+1

α (M) = τk
α(M). The definition of α implies
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Figure 3.7: A spurious counterexample in an abstract regular fixpoint computation

L(τk
α(M)) ⊇ τ∗(L(M)). This means that in a finite number of steps, we can compute an

overapproximation of the reachability set τ∗(L(M)).

Refining Automata Abstractions

We call an automata abstraction function α′ a refinement of α iff ∀M ∈MΣ : L(α′(M)) ⊆
L(α(M)). Moreover, we call α′ a true refinement iff it yields a smaller overapproximation
in at least one case—formally, iff ∃M ∈MΣ : L(α′(M)) ⊂ L(α(M)).

A need to refine α arises when a situation depicted in Fig. 3.7 happens. Suppose we
are checking whether no configuration from the set described by some automaton Bad is
reachable from some given set of initial configurations described by an automaton M0. We
suppose L(M0) ∩ L(Bad) = ∅—otherwise the property being checked is broken already
by the initial configurations. Let Mα

0 = α(M0) and for each i > 0, Mi = τ̂(Mα
i−1) and

Mα
i = α(Mi) = τα(Mα

i−1). There exist k and l (0 ≤ k < l) such that: (1) ∀i : 0 ≤ i < l :
L(Mi)∩L(Bad) = ∅. (2) L(Ml)∩L(Bad) = L(Xl) 6= ∅. (3) If we define Xi as the minimal
deterministic automaton accepting τ−1(L(Xi+1)) ∩ L(Mα

i ) for all i such that 0 ≤ i < l,
then ∀i : k < i < l : L(Xi) ∩ L(Mi) 6= ∅ and L(Xk) ∩ L(Mk) = ∅ despite L(Xk) 6= ∅.
Next, we see that either k = 0 or L(Xk−1) = ∅, and it is clear that we have encountered
a spurious counterexample.

Note that when no l can be found such that L(Ml) ∩ L(Bad) 6= ∅, the computation
eventually reaches a fixpoint, and the property is proved to hold. On the other hand, if
L(X0) ∩ L(M0) 6= ∅, we have proved that the property is broken.

The spurious counterexample may be eliminated by refining α to α′ such that for any
automaton M whose language is disjoint with L(Xk), the language of its α′-abstraction
will not intersect L(Xk) either. Then, the same faulty reachability computation (i.e., the
same sequence of Mi and Mα

i ) may not be repeated because we exclude the abstraction
of Mk to Mα

k . Moreover, the reachability of the bad configurations is in general excluded
unless there is another reason for it than overapproximating by subsets of L(Xk).

A slightly weaker way of eliminating the spurious counterexample consists in refining
α to α′ such that at least the language of the abstraction of Mk does not intersect with
L(Xk). In such a case, it is not excluded that some subset of L(Xk) will again be used
for an overapproximation somewhere, but we still exclude a repetition of exactly the same
faulty computation. The obtained refinement can be coarser, which may lead to more
refinements and a slower computation. On the other hand, the computation may terminate
sooner due to quickly jumping to the fixpoint and use less memory due to working with less
structured sets of configurations of the systems being verified—the abstraction is prevented
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from becoming unnecessarily precise in this case. For the latter reason, as illustrated later,
one may sometimes successfully use even some more heuristic approaches that guarantee
that the spurious counterexample will only eventually be excluded (i.e., after a certain
number of refinements) or that do not guarantee the exclusion at all.

An obvious danger of using a heuristic approach that does not guarantee an exclusion
of spurious counterexamples is that the computation may easily start looping. Notice,
however, that even when we refine automata abstractions such that spurious counterex-
amples are always excluded, and the computation does not loop, we do not guarantee that
it will eventually stop—we may keep refining forever. Indeed, the verification problem we
are solving is undecidable in general.

Abstracting Automata by Collapsing Their States

In the following two sections, we discuss several concrete automata abstraction functions.
They are based on automata state equivalence schemas that define for each automaton
from MΣ an equivalence relation on its states. An automaton is then abstracted by
collapsing all its states related by this equivalence. We suppose such an equivalence to
reflect the fact that the future and/or history of the states to be collapsed is close enough,
and the difference may be abstracted away.

Formally, an automata state equivalence schema E assigns an automata state equiva-
lence ∼E

M⊆ Q × Q to each finite automaton M = (Q,Σ, δ, q0, F ) over Σ. We define the
automata abstraction function αE based on E such that ∀M ∈ MΣ : αE(M) = M/ ∼E

M .
We call E finitary iff αE is finitary. We refine αE by refining E such that more states are
distinguished in at least some automata.

The automata state equivalence schemas presented below are then all based on one of
the following two basic principles: (1) comparing states wrt. the intersections of their for-
ward/backward languages with some predicate languages (represented by the appropriate
predicate automata) and (2) comparing states wrt. their forward/backward behaviours up
to a certain bounded length.

3.5.3 Automata State Equivalences Based on Predicate Languages

The two automata state equivalence schemas we introduce in this section—FP based on
forward languages of states and BP based on backward languages—are both defined wrt.
a finite set of predicate automata P. They compare two states of a given automaton
according to the intersections of their forward/backward languages with the languages of
the predicates. Below, we first introduce the basic principles of the schemas and then add
some implementation and optimisation notes.

The FP Automata State Equivalence Schema

The automata state equivalence schema FP defines two states of a given automaton to be
equivalent when their languages have a nonempty intersection with the same predicates of
P. Formally, for an automaton M = (Q,Σ, δ, q0, F ), FP defines the state equivalence as
the equivalence ∼P

M such that ∀q1, q2 ∈ Q : q1 ∼
P
M q2 ⇔ (∀P ∈ P : L(P )∩L(M, q1) 6= ∅ ⇔

L(P ) ∩ L(M, q2) 6= ∅).
Clearly, as P is finite and there is only a finite number of subsets of P representing

the predicates with which a given state has a nonempty intersection, FP is finitary.

For our example from Fig. 3.6, if we take as P the automata of the languages of
the states of Bad, we obtain the automaton in Fig. 3.8(a) as the abstraction of Init from
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Figure 3.8: An example using abstraction based on predicate languages

Fig. 3.6(c). This is because all states of Init except the final one become equivalent. Then,
the intersection of τ̂(α(Init)) with the bad configurations—shown in Fig. 3.8(c)—is not
empty, and we have to refine the abstraction.

The FP schema may be refined by adding new predicates into the current set of pred-
icates P. In particular, we can extend P by automata corresponding to the languages of
all the states in Xk from Fig. 3.7. Theorem 3.5.1 shows that this prevents abstractions
of languages disjoint with L(Xk), such as—but not only—L(Mk), from intersecting with
L(Xk). Consequently, as we have already explained, a repetition of the same faulty com-
putation is excluded, and the set of bad configurations will not be reached unless there is
another reason for this than overapproximating by subsets of L(Xk).

Theorem 3.5.1 Let us have any two finite automata M = (QM ,Σ, δM , q
M
0 , FM ) and

X = (QX ,Σ, δX , q
X
0 , FX) and a finite set of predicate automata P such that ∀qX ∈ QX :

∃P ∈ P : L(X, qX) = L(P ). Then, if L(M) ∩ L(X) = ∅, L(αFP
(M)) ∩ L(X) = ∅ too.

Proof. We prove the theorem by contradiction. Suppose L(αFP
(M)) ∩ L(X) 6= ∅. Let

w ∈ L(αFP
(M))∩L(X). As w is accepted by αFP

(M), M must accept it when we allow it
to perform a certain number of “jumps” between states equal wrt. ∼P

M—after accepting a
prefix of w and getting to some q ∈ QM , M is allowed to jump to any q′ ∈ QM such that
q ∼P

M q′ and go on accepting from there (with or without further jumps).

Suppose that the minimum number of jumps needed to accept a word from L(αFP
(M))∩

L(X) in M is i, i > 0, and let w′ be such a word. Let the last jump within accepting w′
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Figure 3.9: An illustration of the proof of Theorem 3.5.1

in M be from some state q1 ∈ QM to some q2 ∈ QM such that q1 ∼
P
M q2. Let w′ = w1w2

such that w1 is accepted (possibly with jumps) just before the jump from q1 to q2 (cf.
Fig. 3.9). Clearly, q2 −→

w2

M q3 for some q3 ∈ FM . We know that X accepts w′. Suppose
that after accepting w1, it is in some qX ∈ QX . As w2 ∈ L(X, qX) and w2 ∈ L(M, q2),
L(M, q2) ∩ L(P ) 6= ∅ for the predicate(s) P ∈ P for which L(P ) = L(X, qX). Moreover,
as q1 ∼

P
M q2, L(M, q1) ∩ L(P ) 6= ∅ too. This implies there exists w′

2 ∈ L(P ) such that
w′

2 ∈ L(M, q1) and w′
2 ∈ L(X, qX). However, this means that w1w

′
2 ∈ L(αFP

(M)) ∩ L(X)
can be accepted in M with i − 1 jumps, which is a contradiction to the assumption of i
being the minimum number of jumps needed. 2

In our example, we refine the abstraction by extending P with the automata repre-
senting the languages of the states of X0 from Fig. 3.8(d). Fig. 3.8(e) then indicates
for each state q of Init, the predicates corresponding to the states of Bad and X0 whose
languages have a non-empty intersection with the language of q. The first two states of
Init are equivalent and are collapsed to obtain the automaton from Fig. 3.8(f), which is
a fixpoint showing that the property is verified. Notice that it is an overapproximation of
the set of reachable configurations from Fig. 3.6(d).

The price of refining FP by adding predicates for all the states in Xk may seem pro-
hibitive, but fortunately this is not the case in practice. As described later on in this
section, we do not have to treat all the new predicates separately. We exploit the fact that
they come from one original automaton and share large parts of their structure. In fact,
we can work just with the original automaton and each of its states may be considered
an initial state of some predicate. This way, adding the original automaton as the only
predicate and adding predicates for all of its states becomes roughly equal. Moreover, the
refinement may be weakened by taking into account just some states of Xk as discussed
later on.

The BP Automata State Equivalence Schema

The BP automata state equivalence schema is an alternative of FP based on backward
languages of states rather than the forward ones. For an automaton M = (Q,Σ, δ, q0, F ),
it defines the state equivalence as the equivalence←−∼P

M such that ∀q1, q2 ∈ Q : q1
←−∼P

M q2 ⇔

(∀P ∈ P : L(P ) ∩
←−
L (M, q1) 6= ∅ ⇔ L(P ) ∩

←−
L (M, q2) 6= ∅).

Clearly, BP is finitary for the same reason as FP . It may also be refined by extending
P by automata corresponding to the languages of all the states in Xk from Fig. 3.7. As
stated in Theorem 3.5.2, the effect is the same as for FP .
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Theorem 3.5.2 Let us have any two finite automata M = (QM ,Σ, δM , q
M
0 , FM ) and

X = (QX ,Σ, δX , q
X
0 , FX) and a finite set of predicate automata P such that ∀qX ∈ QX :

∃P ∈ P :
←−
L (X, qX) = L(P ). Then, if L(M) ∩ L(X) = ∅, L(αBP

(M)) ∩ L(X) = ∅ too.

Proof. The theorem can be proved by contradiction in a similar way as Theorem 3.5.1.
This time, as a consequence of working with backward languages of states, we do not deal
with the last jump, but the first jump in accepting some w′ ∈ L(αBP

(M)) ∩ L(X) in M .
We do not look for a replacement w′

2 of w2 to be accepted from q1 instead of q2, but for a
replacement w′

1 of w1 to be accepted before q2 rather than before q1. 2

Implementing and Optimising Collapsing Based on FP/BP

The abstraction of an automaton M wrt. the automata state equivalence schema FP

may be implemented by first labelling states of M by the states of predicate automata
in P with whose languages they have a non-empty intersection and then collapsing the
states of M that are labelled by the initial states of the same predicates. (Provided the
sets of states of the predicate automata are disjoint.) The labelling can be done in a
way similar to constructing a backward synchronous product of M with the particular
predicate automata: (1) ∀P ∈ P ∀qP

F ∈ FP ∀q
M
F ∈ FM : qM

F is labelled by qP
F , and (2)

∀P ∈ P ∀qP
1 , q

P
2 ∈ QP ∀q

M
1 , qM

2 ∈ QM : if qM
2 is labelled by qP

2 , and there exists a ∈ Σ
such that qM

1 →
a
δM

qM
2 and qP

1 →
a
δP
qP
2 , then qM

1 is labelled with qP
1 . The abstraction of an

automaton M wrt. the BP schema may be implemented analogously.
If the above construction is used, it is then clear that when refining FP/BP , we can

just add Xk into P and modify the construction such that in the collapsing phase, we
simply take into account all the labels by states of Xk and do not ignore the (anyway
constructed) labels other than qXk

0 .
Moreover, we can try to optimise the refinement of FP/BP by replacing Xk in P by

its important tail/head part defined wrt. Mk as the subautomaton of Xk based on the
states of Xk that appear in at least one of the labels of Mk wrt. FP∪{Xk}/BP∪{Xk},
respectively. As stated in Theorem 3.5.3, the effect of such a refinement corresponds to
the weaker way of refining automata abstraction functions described in Section 3.5.2. This
is due to the strong link of the important tail/head part of Xk to Mk wrt. which it is
computed. A repetition of the same faulty computation is then excluded, but the obtained
abstraction is coarser, which may sometimes speed up the computation as we have already
discussed.

Theorem 3.5.3 Let M and X be any finite automata over Σ and Y = (QY ,Σ, δY , q
Y
0 , FY )

the important tail/head part of X wrt. FP/BP and M . If P ′ is such that ∀qY ∈ QY ∃P ∈

P ′ : L(Y, qY )/
←−
L (Y, qY ) = L(P ) and L(M) ∩ L(X) = ∅, L(αFP′/BP′ (M)) ∩ L(X) = ∅.

Proof. The key last/first jump in an accepting run of M mentioned in the proofs of
Theorems 3.5.1, 3.5.2 is between states that can be labelled by some states of X. The
concerned states of X are thus in the important tail/head part of X, and the proof
construction of Theorems 3.5.1, 3.5.2 can still be applied. 2

A further possible heuristic to optimise the refinement of FP/BP is trying to find just
one or two key states of the important tail/head part of Xk such that if their languages
are considered in addition to P, L(Mα

k ) will not intersect L(Xk).
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Figure 3.10: An example using abstraction based on languages of words up to length n
(for n = 2)

We close the section by noting that in the initial set of predicates P of FP/BP , we
may use, e.g., the automata describing the set of bad configurations and/or the set of
initial configurations. Further, we may also use the domains or ranges of the transducers
encoding the particular transitions in the systems being examined (whose union forms the
one-step transition relation τ which we iterate). The meaning of the latter predicates is
similar to using guards or actions of transitions in predicate abstraction [BLO98].

3.5.4 Automata State Equivalences Based on Finite-Length Languages

We now present the possibility of defining automata state equivalence schemas based on
comparing automata states wrt. a certain bounded part of their languages. It is a simple,
yet (according to our practical experience) often quite efficient approach. As a basic
representative of this kind of schemas, we first present the schema FL

n based on forward
languages of words of a limited length. Then, we discuss its possible alternatives.

The FL
n automata state equivalence schema defines two states of an automaton to be

equal if their languages of words of length up to a certain bound n are identical. Formally,
for an automaton M = (Q,Σ, δ, q0, F ), FL

n defines the state equivalence as the equivalence
∼n

M such that ∀q1, q2 ∈ Q : q1 ∼
n
M q2 ⇔ L≤n(M, q1) = L≤n(M, q2).

FL
n is clearly finitary. It may be refined by incrementally increasing the bound n on

the length of the words considered. This way, as we work with minimal deterministic
automata, we may achieve the weaker type of refinement described in Section 3.5.2. Such
an effect is achieved when n is increased to be equal or bigger than the number of states
in Mk from Fig. 3.7 minus one. In a minimal deterministic automaton, this guarantees
that all states are distinguishable wrt. ∼n

M , and Mk will not be collapsed at all.

In Fig. 3.10, we apply FL
n to the example from Fig. 3.6. We choose n = 2. In this

case, the abstraction of the Init automaton is Init itself. Fig. 3.10(a) indicates the states
of τ̂(Init) that have the same languages of words up to size 2 and are therefore equivalent.
Collapsing them yields the automaton shown in Fig. 3.10(b) (after determinisation and
minimisation), which is a fixpoint. Notice that it is a different overapproximation of the
set of reachable configurations than the one obtained using FP . If we choose n = 1, we
obtain a similar result, but we need one refinement step of the above described kind.

Let us, however, note that according to our practical experience, the increment of n
by |QM | − 1 may often be too big. Alternatively, one may use its fraction (e.g., one half),
increase n by the number of states in Xk (or its fraction), or increase n just by one. In
such cases, an immediate exclusion of the faulty run is not guaranteed, but clearly, such a
computation will be eventually excluded because n will sooner or later reach the necessary
value. The impact of working with abstractions refined in a coarser way is then like in the
case of using FP/BP .
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Regarding the initial value of n, one may use, e.g., the number of states in the au-
tomaton describing the set of initial configurations or the set of bad configurations, their
fraction, or again just one.

As a natural alternative to dealing with forward languages of words of a limited length,
we may also think of backward languages of words of a limited length and forward or
backward languages of traces with a limited length. The automata equivalence schemas
BL

n , FT
n , and BT

n based on them can be formally defined analogously to FL
n .

Clearly, all these schemas are finitary. Moreover, we can refine them in a similar way as
FL

n . For FT
n and BT

n , however, no guarantee of excluding a spurious counterexample may be
provided. Using FT

n , e.g., we can never distinguish the last three states of the automaton in
Fig. 3.10(b)—they all have the same trace languages. Thus, we cannot remember that the
token cannot get to the last process. Nevertheless, despite this, our practical experience
shows that the schemas based on traces are quite successful in practice.

3.5.5 Experiments with Abstract Regular Model Checking

We have implemented the ideas described above in a prototype tool written in YAP Prolog
using the FSA library [vN04]. To demonstrate that abstract regular model checking is ap-
plicable to verification of a broad variety of systems, we tried to apply the tool to a number
of different verification tasks. Currently, the techniques are being re-implemented using
the LASH [LAS] and MONA [KM01] automata libraries.

The Types of Systems Verified

Parameterised networks of processes We considered several slightly idealised mu-
tual exclusion algorithms for an arbitrary number of processes (namely the Bakery, Burns,
Dijkstra, and Szymanski algorithms in versions similar to [Nil00]). In most of these sys-
tems, the particular processes are finite-state. We encode global configurations of such
systems by words whose length corresponds to the number of participating processes, and
each letter represents the local state of some process. In the case of the Bakery algorithm
where each process contains an unbounded ticket value, this value is not represented di-
rectly, but encoded in the ordering of the processes in the word.

We verified the mutual exclusion property of the algorithms, and for the Bakery al-
gorithm, we verified that some process will always eventually get to the critical section
(communal liveness) as well as that each individual process will always eventually get
there (individual liveness) under suitable fairness assumptions. For checking liveness, we
manually composed the appropriate Büchi automata with the system being verified. Loop
detection was allowed by working with pairs of configurations consisting of a remembered
potential beginning of a loop (fixed at a certain—randomly chosen—point of time) and
the current configuration being further modified. Checking that a loop is closed then con-
sisted in checking that a pair of the same configurations was reached. To encode the pairs
of configurations using finite automata, we interleaved their corresponding letters.

Push-down Systems We considered a simple system of recursive procedures—the plot-
ter example from [EHRS00]. We verified a safety part of the original property of interest
describing the correct order of plotter instructions to be issued. In this case, we use words
to encode the contents of the stack.

Systems with Queues We experimented with a model of the Alternating Bit Protocol
(ABP) for which we checked correctness of the delivery order of the messages. A word
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1: x = NULL;
2: while (list ! = NULL) {
3: y = list→ next;
4: list→ next = x;
5: x = list;
6: list = y;
7: }
8: list = x;

Figure 3.11: Reversing a singly-linked list

encoding a configuration of the protocol contained two letters representing internal states
of the communicating processes. Moreover, it contained the contents of the two lossy
communication channels with a letter corresponding to each message. Let us note that
in this case, as well as in the above and below cases, general (non-length-preserving)
transducers were used to encode transitions of the systems.

Petri Nets, Systems with Counters We examined a general Petri net with inhibitor
arcs, which can be considered an example of a system with unbounded counters too. In
particular, we modelled a Readers/Writers system extended with a possibility of dynamic
creation/deletion of processes, for which we verified mutual exclusion between readers and
writers and between multiple writers. We considered a correct version of the system as
well as a faulty one, in which we omitted one of the Petri net arcs. Markings of places in
the Petri net were encoded in unary, and the particular values were put in parallel. (Using
this encoding, a marking of a net with places p and q, two tokens in p, and four in q would
be encoded as q|q|pq|pq.) In some other examples of systems with counters (such as the
Bakery algorithm for two processes with unbounded counters), we also successfully used
a binary encoding of the counters like in NDDs [WB98].

Dynamic Linked Data Structures We considered verification of a procedure for re-
versing singly-linked lists shown in Fig. 3.11. It was for the first time ever that regular
model checking has been applied to such a task. The encoding used, which is described
below, was a bit different from the more systematic one that we proposed in the follow-up
work [BHMV05] discussed in Chapter 4. We present here the older encoding for a com-
parison how the subject has further been developed.

When abstracting the memory manipulated by the procedure, we focus on the cases
where in the first n memory cells (we take the biggest n possible) there are at most two
linked lists linking consecutive cells, the first list in a descending way and the second one
in an ascending way. We represent configurations of the procedure as words over the
following alphabet: list items are represented by symbols i, left/right pointers by </>,
pointer variables are represented by their names (list is shortened to l), and o is used to
represent the memory outside the list. Moreover, we use symbols iv (resp. ov) to denote
that v points to i (resp. outside the list). We use | to separate the ascending and descending
lists. Pointer variables pointing to null are not present in the configuration representations.
A typical abstraction of the memory may then look like i < i < i | il > i ox where
the first list contains three items, the second one two, list points to the beginning of
the second list, x points outside the two lists, and y points to null. Provided such an
abstraction is used for the memory contents (prefixed with the current control line), it is
not difficult to associate transducers to each statement of the procedure. For example, the
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transducer corresponding to the statement list→ next := x at line 4 transforms a typical
configuration 4 i < ix | il > iy > i o to the configuration 5 i < ix < il | iy > i o (the
successor of the item pointed to by list is not anymore the one pointed to by y, but the
one pointed to by x). Then, the transducer τ corresponding to the whole procedure is the
union of the transducers of all the statements.

If the memory contents does not fit the above described form, we abstract it to a single
word with the “don’t know” meaning. However, when we start from a configuration like
1 il > i > i o or 1 i < i < il o, the verification shows that such a situation does not
happen. Via a symmetry argument exploiting the fact that the procedure never refers to
concrete addresses, the results of the verification may then easily be generalised to lists
with items stored at arbitrary memory locations.

By computing an abstraction of the reachability set τ∗(Init), we checked that the
procedure outputs a list. Moreover, by computing an overapproximation of the reachability
relation τ∗ of the system, we checked that the output list is a reversion of the input one
(modulo the fact that we consider a finite number of distinguishable list items). To speed
up the computation, the reachability relation was restricted to the initial configurations,
i.e., to ιInit ◦ τ

∗ where ιInit is the identity relation with the domain (and range) restricted
to L(Init).

A Summary of the Results

The efficiency of using the FL
n , FT

n , BL
n , or BT

n automata state equivalence schemas heavily
depends on the choice of the initial value of n and the strategy of increasing it. In our
experiments, we have tried |QBad|, |QBad|/2, |QInit|, |QInit|/2, and 1 as the initial value
of n and |QMk

|, |QMk
|/2, |QXk

|, |QXk
|/2, and 1 as its increment. The results we obtained

are summarised in Table 3.1. In the table, we always mention the scenario for which we
obtained the shortest execution time.6 We first say whether it was in a forward or backward
computation (i.e., starting from the initial configurations or the “bad” configurations),
then the automata state equivalence schema used, followed by the initial value of n, and
if it was needed, the increment of n written behind a plus symbol. In the case of the
Readers/Writers example, the time consumption was quite high, and we tried to iteratively
find a value of n for which it was the best.

Similarly to the above, the efficiency of using the FP/BP automata state equivalence
schemas depends a lot on the choice of the initial predicates. As the basic initial predicates
in our experiments, we considered using automata representing the set of bad or initial
configurations. We used them alone or together with automata corresponding to the
domains or ranges of the transducers encoding the particular transitions in the systems
being examined. The scenarios that lead to the best results are listed in Table 3.2. The
heuristic optimisation of the refinements described in Section 3.5.3, had a very significant
positive impact in the case of checking individual liveness in the Bakery example. In the
other cases, the effect was neutral or negative.

The times presented in Tables 3.1 and 3.2 are in seconds and were obtained on a
computer based on an Intel Pentium 4 processor at 1.7 GHz. They do not include the
time needed for reading the input model. Taking into account that the tool used was an
early prototype written in YAP Prolog using the FSA library [vN04]7, the results are very
positive. For example, the Uppsala Regular Model Checker [AdJN03] took from about 8 to
11 seconds when applied to a comparable encoding of the Burns, Szymanski, and Dijkstra
examples (and the situation does not seem to have changed too much as yet [Nil05]).

6In some cases, a few scenarios gave a very similar result out of which just one is mentioned.
7Prolog was chosen as a rapid, but still relatively efficient, prototyping environment.
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Table 3.1: Some results of experimenting with abstract regular model checking while using
the finite-length-languages-based abstractions

Experiment FL
n/FT

n/BL
n/BT

n T
FL

n/FT
n/BL

n/BT
n

best

Bakery Fw, FT
n , |QBad|/2 0.02

Bakery/comm. liv. Fw, FT
n , |QBad| 0.14

Bakery/ind. liv. Fw, FT
n , 1 8.66

Bakery – counters Bw, BL
n , |QBad| 0.08

ABP Fw, FL
n , |QBad|/2 0.32

Burns Fw, BT
n , 1 0.31

Dijkstra Fw, FT
n , 1 1.75

PDS Bw, FL
n , |QBad|/2 0.02

Petri net/Read. Wr. Fw, BT
n , special n 21.07

Faulty PN/Rd. Wr. Fw, FL
n , |QBad| 0.73

Szymanski Fw, BT
n , 1 0.25

Rev. Lists Fw, FL
n , |QInit|/2 + |QXk

|/2 0.61

Rev. Lists/Transd. Fw, FL
n , |QInit|/2 21.79

Finally, Tables 3.1 and 3.2 also show that apart from cases where the approaches based
on languages of words/traces up to a bounded length and the ones based on intersections
with predicate languages are roughly equal, there are really cases where either the former
or the latter approach is faster. This experimentally justifies our interest in both of the
techniques.

As we have noted in the introduction to the chapter, for some of the classes of sys-
tems we considered, there exist various special purpose verification approaches, and the
appropriate verification problems are sometimes even decidable (as, e.g., for push-down
systems [BEM97, EHRS00, Sch02b] or lossy channel systems [BP96, ABJ98, AAB99]).
However, we wanted to show that our approach is generic and can be uniformly applied
to all these systems. Moreover, in the future, with a new version of our tool, we would
like to compare the performance of abstract regular model checking with the specialised
approaches on large systems. We believe that while we can hardly outperform these algo-
rithms in general, in some cases of systems with complex state spaces, our approach could
turn out to be quite competitive due to not working with the exact representation of the
state spaces, but their potentially much simpler approximations in which many details not
important for the property being checked are ignored.

Among all the scenarios considered, we have noticed just a very few in which the
computation was diverging (or seemed to diverge)—e.g., forward verification of ABP or
the Szymanski algorithm using BP with the automaton representing the set of initial
states as the only initial predicate. The fact that the computation is diverging may
be clearly deduced, e.g., when new predicates representing languages like a, aa, aaa, ...
are being added. In our case, the divergence disappeared when a different set of initial
predicates was used. However, we have also successfully tried to remove it by accelerating
the counterexample analysis, which is a step sometimes applied in predicate abstraction
[BLO98] too. We tried to accelerate by a simple widening schema (detecting a constant
growth in the number of states in several consecutive newly added predicates and adding
a self-loop based on every transition of the last such predicate leaving its initial part
common with the previous predicate). Sometimes, the divergence could also be resolved
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Table 3.2: Some results of experimenting with abstract regular model checking while using
the predicate-based abstractions

Experiment FP/BP T
FP/BP

best

Bakery Fw, FP , [Bad] 0.02

Bakery/comm. liv. Fw, FP , [Bad|Grd] 0.13

Bakery/ind. liv. Fw, FP , [Bad], Key St. 19.41

Bakery – counters Bw, BP , [Bad|Grd] 0.09

ABP Fw, BP , [Init|Grd] 0.68

Burns Fw, BP , [Bad] 0.06

Dijkstra Fw, BP , [Bad] 0.73

PDS Bw, FP , [Bad] 0.02

Petri net/Read. Wr. Fw, BP , [Bad|Grd] 5.86

Faulty PN/Rd. Wr. Fw, BP , [Init|Grd] 0.81

Szymanski Fw, FP , [Init|Grd] 0.55

Rev. Lists Fw, BP , [Bad|Grd|Act] 1.29

Rev. Lists/Transd. Fw, BP , [Init|Grd|Act] 42.60

by combining the two automata state equivalence schemas presented here (namely by
abstracting new predicates added wrt. FP/BP according to the equivalences based on
languages of words/traces of a bounded length).

3.6 Inference of Regular Languages

In this section, we describe one further way of implementing regular model checking. The
method we describe here has originally been described in [HV04, HV05]. It is based
on using inference of regular languages extending the work of [FO97]. The approach
is motivated by the observation that for infinite-state systems whose behaviour can be
modelled using length-preserving transducers, there is a finite computation for obtaining
all reachable configurations up to a certain length. These configurations may be considered
as a sample of the reachable configurations of the given system. Then, methods that have
been developed for inference of regular languages may be used to generalise the sample
with the aim of obtaining the full reachability set or an overapproximation of it that is
precise enough to prove the property of interest (if it holds). We in particular concentrate
on using the Trakhtenbrot-Barzdin algorithm [TB73] as the inference algorithm, but we
also briefly mention some other approaches we have tried.

As shown by our experiments, the method provides good performance results. At the
same time, in contrast to many other existing regular model checking methods, termination
is guaranteed for all the systems whose set of reachable configurations is regular (including,
e.g., lossy channel systems and push-down systems). Similar results can then be obtained
for dealing with reachability relations instead of reachability sets too.

From the above, it is clear that we now primarily concentrate on systems that may be
encoded using length-preserving transducers. Dealing with length-preserving transducers
is, however, sufficient even for verification of safety properties of non-length preserving
systems. In such a case, words encoding configurations may be in advance extended with
special blank symbols to be consumed whenever new useful symbols are to be inserted.
Moreover, as we show, our method can be extended to deal with non-length-preserving
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transducers too. Then, however, our termination guarantee does not hold (though in
practice, the method still behaves well).

As we describe at the end of the section, we have implemented the method and tested it
on a number of examples of different systems similar to the ones presented in Section 3.5.5
including parametric networks of processes, a pushdown system, systems with counters, a
system with lossy queues, and a system with a linked list as a representative of systems with
recursive data structures. The experiments show that the method is quite efficient with
the results being often comparable with those of abstract regular model checking for which,
however, termination guarantees are not very clear as yet.8

Before proceeding to the details of the method, let us add a few words on the related
work. The idea of using inference of regular languages for regular model checking has
already been used in [FO97], which, however, primarily targeted parameterised rings only,
and the computation loop used there was different than ours and required a certain manual
classification of the transitions of the systems used. Moreover, the authors of [FO97] have
not implemented their method.

The works [VSVA04b, VSVA04a], which appeared concurrently and independently to
our results, propose another approach to verification based on inference of regular lan-
guages specialised to the verification of properties of systems with FIFO channels. These
works use different inference algorithms than the one used in our work (they use either the
RPNI [OG92, Lan92] or the Angluin’s L∗ algorithm [Ang87]) and apply them to sequences
of configurations that may appear in the state space of the examined systems rather than
to individual configurations. Recently, the latter method has been generalised [VSVA05]
to handle more than only FIFO channel systems and also to handle omega-regular prop-
erties. The omega-regular model checking is implemented via learning fixpoints of special
functionals over paths in state spaces of the examined systems designed for the particular
temporal operators. Moreover, in [VV05], an extension to branching-time properties of pa-
rameterised networks of processes and of systems with counters has been considered.

Finally, we can see the recent growing interest in applying the inference methods in ver-
ification even outside the regular model checking framework. In [CCST05, AMN05], they
were, for instance, applied in the framework of assume-guarantee reasoning for inferring
the assumptions to be used. In [LRS05], a method based on inference of predicates was
used within shape analysis of programs with dynamic data structures making more auto-
mated the framework [SRW02] based on 3-valued predicate logic with transitive closure.
In [GLP06], inference of regular languages was used to obtain invariants of parameterised
networks of processes.

Below, we first describe the Trakhtenbrot-Barzdin algorithm for inference of regular
languages and then propose a way to use it for regular model checking. Subsequently, we
discuss the experiments we have done (including some heuristics that we have tried as an
alternative to the Trakhtenbrot-Barzdin algorithm).

3.6.1 Inference of Regular Languages from Complete Training Sets

Inference of regular languages is a very active research area (see, e.g., [TB73, OG92,
Lan92, Dup96]). Basically, the problem is to infer a language from some of its words
(and/or words known not to belong to the language). An important notion used in the
proposed algorithms is that of a training set (or sample). A training set T = (T+, T−) is

8There has only recently appeared a result [Ler06] giving a specialised termination guarantee for com-
puting the so-called accelerations [BF04] within an NDD-based symbolic verification of counter systems
using a modification of the abstraction based on finite-length languages.
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Figure 3.12: A transducer τBad encoding an undesirable behaviour for the token passing
example from Fig. 3.1

a pair of two disjoint sets T+, T− ⊆ Σ∗ where T+ contains positive examples (words in
the language to be inferred), and T− contains negative ones. A training set T = (T+, T−)
is called n-complete if T+ ∪ T− = Σ≤n where Σ≤n = {w ∈ Σ∗ | |w| ≤ n}.

The notion of n-completeness is crucial for the Trakhtenbrot-Barzdin algorithm (TB
algorithm for short) [TB73] that we have chosen to be applied in our work out of the
existing algorithms for inference of regular languages. We show below that n-complete
training sets may easily be obtained in regular model checking.

For n ∈ N and a language L, let L≤n denote the subset of L of words of length at
most n, i.e., L≤n = {w ∈ L | |w| ≤ n}. For a length-preserving transducer τ encoding a
one-step transition relation (such that ι ⊆ τ for the identity relation ι), a regular set of
initial configurations I (encoded via a finite-state automaton Init), and a regular set of
bad configurations B (represented by a finite-state automaton Bad), the regular model
checking problem of checking whether τ∗(I) ∩ B = ∅ holds can be seen as a language
inference problem in the following way: We want to compute (or at least approximate)
the set τ∗(I). Since τ is length-preserving, the set τ∗(I≤n) is finite for each n and can
be calculated by finitely iterating τ (recall that ι ⊆ τ). Furthermore, each word of length
smaller or equal to n which is not in τ∗(I≤n) cannot be in τ∗(I) either. Therefore, the
sets τ∗(I≤n) and Σ≤n \ τ∗(I≤n) can be seen as sets of positive and negative examples of
the language τ∗(I) that we want to infer. To be more precise, they contain exactly all
positive and negative examples of words of the given language up to some length and thus
form an n-complete training set.

For increasing n, we get more and more positive and negative examples of the language
τ∗(I)—the training set is growing. Therefore, if τ∗(I) is regular, we will eventually (we do
not know when, of course) obtain a training set T big enough in terms of [TB73], and the
TB algorithm will allow us to infer τ∗(I) from T . If τ∗(I) is not regular, it is still possible
to perhaps get an overapproximation sufficient to prove the property of interest.

The same approach can also be used to try to infer the relation τ∗ for length-preserving
transducers by considering as the alphabet pairs of letters and by computing τ∗ restricted
to words of length smaller or equal to n (and then generalising it according to the TB
algorithm). In this case, we may specify the undesirable property of the system using
a length-preserving transducer τBad and consider the verification problem of checking
whether τ∗ ∩ τBad = ∅. An example of a transducer τBad specifying an undesirable be-
haviour for the simple token passing protocol from Fig. 3.1 is shown in Fig. 3.12—it states
that the token should never be passed to the left (nor a new token should be created).

Before going into more details of the technique, let us comment a bit more on why
dealing with length-preserving transducers that we now concentrate on is not as restrictive
as it might seem. As we have already indicated, this is because for finite runs that suffice
for verification of safety properties, we can always replace adding and removing of symbols
by rewriting special blank symbols⊥ added in advance into the initial configurations. More
precisely, we can add self-loops labelled with ⊥/⊥ to every state of τ , replace every ε/a
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by a ⊥/a transition, every a/ε transition by an a/⊥ one, and add ⊥-labelled self-loops at
every state of the automata Init and Bad (provided they are used). Moreover, we later
show an extension of our technique to non-length-preserving transducers too.

The Trakhtenbrot-Barzdin Algorithm

To describe the TB algorithm and its use in regular model checking in detail, we need
some more definitions. A deterministic finite-state automaton A is called consistent with
a training set T = (T+, T−) if T+ ⊆ L(A) and L(A) ∩ T− = ∅. A training set T =
(T+, T−) is n-complete wrt. a deterministic finite-state automaton A if T+ = L≤n(A).
Given an n-complete training set T = (T+, T−), we call a deterministic finite automaton
AT = (Q,Σ, δ, q0, F ) the prefix-tree automaton of T if L(A) = T+, AT has the form of a
tree and does not contain any nodes with the empty language (provided T+ 6= ∅).

Furthermore, we define the depth of an automaton M = (Q,Σ, δ, q0, F ) denoted dM as
the maximum length of the shortest paths leading to the particular states of M from the
initial state, i.e., dM = maxq∈Q min

w∈Σ∗∧q0

w−→q
|w|. We say that two states q, q′ ∈ Q of M

are k-indistinguishable, which we denote by q ≡k q
′, if L≤k(M, q) = L≤k(M, q′). We then

define the degree of distinguishability ρM of M as the minimal k such that any two states
q, q′ of M are k-distinguishable, i.e., q 6≡k q

′.
We now describe a slightly modified version of the Trakhtenbrot-Barzdin algorithm

which computes an inferred deterministic finite-state automaton (also called target au-
tomaton) with the minimal number of states consistent with a given n-complete training
set. Let T = (T+, T−) be an n-complete training set and AT the deterministic prefix-tree
automaton of T . Obviously, states of AT must correspond to states of the target automa-
ton ĀT since it must accept all words accepted by AT . Several different states of AT can,
however, correspond to the same state of ĀT . Hence, the basic idea of the algorithm is to
collapse two states of AT if this does not lead to a word of length shorter or equal to n
being accepted though it is not accepted by AT . Two states q and q′ in AT can be safely
collapsed if they are compatible, i.e., if they are k-indistinguishable (q ≡k q

′) where k is
the minimum of the heights of the subtrees starting at q and q′.

Let succ be the function which associates to each state in AT the successor in a
breadth-first ordering. The algorithm modifies AT by identifying compatible states:

Algorithm 3.6.1

input: AT with initial state q0
q1 := q0;
while there is a successor of q1 in AT do

q1 := succ(q1);
q2 := q0;
while q1 6= q2 and not compatible(q1, q2) do

q2 := succ(q2);
od

if q1 6= q2 and compatible(q1, q2) then

let the transition from father(q1) to q1 point to q2 and
erase q1 and all its children from AT ;

od

output: the modified automaton AT

Notice that the original algorithm [TB73] expects on its input trees which are com-
plete (each internal node has a son for each letter). In our setting, this is not necessary
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Figure 3.13: A 2-complete training set and the different stages of the TB algorithm
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Figure 3.14: A 3-complete training set and the different stages of the TB algorithm

since we only consider languages and not the output behaviour of automata. The algo-
rithm has a complexity of O(mn2) where m is the size of AT and n the size of the target
automaton. In Fig. 3.13 and 3.14, we give the different stages of the TB algorithm run
on a 2-complete training set for τ∗(I) and a 3-complete set for τ∗ of the simple token
passing protocol from Fig. 3.1 (with the identity relation added into τ). Two collapsed
compatible states at each stage are marked with ∗. Notice that in the first case, τ∗(I) is
obtained exactly as the result of the algorithm, whereas in the other case, the result is an
overapproximation of τ∗.

We have the following theorem [TB73].

Theorem 3.6.1 Let T be an n-complete training set. Algorithm 3.6.1 computes a deter-
ministic finite-state automaton ĀT with a minimal number of states consistent with T .
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Notice that there could be several different deterministic finite-state automata with
a minimal number of states consistent with T—the output of the TB algorithm is just
one of them. If all the words of the training set come from some minimal deterministic
automaton A, then the TB algorithm is guaranteed to infer it from an n-complete training
set if n is sufficiently big with respect to the structure of the automaton. The degree of
reconstructability r of an automaton A is defined as r = d + ρ + 1 where d is the depth
and ρ the degree of distinguishability. Then we have the following theorem [TB73].

Theorem 3.6.2 Given a minimal deterministic finite-state automaton A with degree of
reconstructability r and a training set T r-complete wrt. A, Algorithm 3.6.1 computes A
(up to isomorphism).

If A has n states, then in the worst case, d = ρ = n − 1 and r = 2n − 1. Therefore,
the complete training set must contain exponentially (in n) many words. Fortunately,
on average [TB73, Lan92], r is much smaller because it can be shown that the average
value of d is Clog|Σ|(n) where C is a constant depending on Σ and ρ = log|Σ|log2(n). This
means that on average, the degree of reconstructability r is small compared to the size
of the automaton and only small complete training sets (polynomial in n) are needed to
reconstruct it.

3.6.2 The Model Checking Algorithm

In this section, we describe our model checking algorithm based on inference of regu-
lar languages. We start with a basic version of the algorithm and then present a few
modifications and extensions to this algorithm.

The Basic Model Checking Algorithm

The idea of our algorithm is to compute bigger and bigger complete training sets coming
from the language τ∗(I), infer an automaton from them, and test whether this inferred
automaton is an invariant sufficient to prove the property. As the inference algorithm, one
can—in principle—use any inference algorithm based on positive and negative examples
proposed in the literature (as, e.g., RPNI [OG92, Lan92]). In our work, we use the
Trakhtenbrot-Barzdin algorithm discussed above because it works with a complete training
set and is guaranteed to output the original automaton if given sufficiently big training
sets. Below, we, however, describe our model checking algorithm in a general way.

Algorithm 3.6.2

input: a length-preserving transducer τ , a regular set of initial configurations I,
and a regular set of bad configurations B

i := 1; /* i can be initialised differently too. */

repeat

C := τ∗(I≤i);

C := Σ≤i \ C;
if B ∩C 6= ∅ then
output: property violated;

A := inference(C,C);
i := i+ 1;

until τ(L(A)) ⊆ L(A) and I ⊆ L(A) and L(A) ∩B = ∅;
output: property satisfied
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When we use the version of the TB algorithm described as Algorithm 3.6.1 for inference
in Algorithm 3.6.2, the call of inference(C,C) invokes Algorithm 3.6.1 with the prefix-tree
automaton of C as input. Then, the computation of C is not necessary.

In the simple token passing example, to verify the property τ∗(I)∩B = ∅, the algorithm
stops for i = 2, and the inferred invariant is exactly τ∗(I). Moreover, if we specify the
undesirable property for our example using the transducer τBad shown in Fig. 3.12 and
we check whether τ∗∩ τBad = ∅, the algorithm stops for i = 3 with the overapproximation
of τ∗ shown in Fig. 3.14.

Notice that to calculate τ∗(I≤i), one can reuse τ∗(I≤i−1) and only calculate the reach-
able configurations of size i. The algorithm tries bigger and bigger training sets until it
terminates because it either finds a counterexample to the property of interest, or an in-
variant including the initial states and not intersecting the “bad” set B. The test I ⊆ L(A)
is necessary because for small i, the examples generated may not suffice to reconstruct
I. An alternative way would be to set the initial value of i wrt. I, but according to our
experience, this is not always the best choice.

If τ∗(I) is regular, the algorithm always terminates.

Theorem 3.6.3 Let τ be a length-preserving transducer and I and B two regular sets. If
τ∗(I) is regular, then Algorithm 3.6.2 with Algorithm 3.6.1 used as the inference algorithm
always terminates.

Proof. If τ∗(I)∩B 6= ∅, then there exists a word w ∈ τ∗(I)∩B of some size n. Since τ is
length-preserving, w ∈ τ∗(I≤n) and the algorithm terminates after at most n iterations.
If τ∗(I) ∩B = ∅, then because of Theorem 3.6.2, the algorithm stops after at most r (the
degree of reconstructability of τ∗(I)) steps. 2

Notice that termination of the algorithm with the property verified means that an
invariant precise enough to prove the property was inferred. In general, we cannot check
whether we have inferred the exact reachability set τ∗(I). This is clear, e.g., from the
fact that for lossy channel systems, τ∗(I) is known to be regular [CFI96a, ABJ98] but not
computable [ABB01, May00b]. From Theorem 3.6.3, we get easily the following.

Corollary 3.6.1 The regular model checking problem of checking whether τ∗(I) ∩B = ∅
is decidable for given regular sets I and B and a length-preserving finite-state transducer
τ if τ∗(I) is regular.

The above is not very surprising as we can give two semi-decision procedures for the
problem: one looking for bigger and bigger counterexamples, the other one enumerating all
regular languages and checking for invariants (as explained in [Pac87] for FIFO-channel
systems). Our algorithm provides a clever way to enumerate regular languages being
candidates for an invariant.

Finally, without going into detail, it is clear that in a very similar way as above, we can
deal with transition relations too. Let τBad be a finite-state length-preserving transducer
describing reachability relations among configurations that are not allowed. Then, we have
the following result.

Corollary 3.6.2 The regular model checking problem of checking whether τ∗ ∩ τBad = ∅
is decidable for given length-preserving finite-state transducers τ and τBad if τ∗ is regular.
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A Few Modifications and Extensions of the Basic Algorithm

Algorithm 3.6.2 can easily be modified to handle non-length-preserving transducers τ too:
When we calculate the fixpoint τ∗(I), after each step, we always intersect the reachable
configurations with Σ≤n. In this way, the fixpoint computation will always terminate.
However, the training set is not guaranteed to be complete anymore as it is possible that
some configuration from Σ≤n is reachable only via configurations of length longer than n.
Therefore, termination of the model-checking algorithm is not in general insured even for
regular τ∗(I). However, according to our practical experience, the method still behaves
well for various concrete examples.

Further, instead of running Algorithm 3.6.1, on which Algorithm 3.6.2 is based, over a
prefix-tree automaton, let us note that it may be directly run over the minimum determin-
istic automaton that is often in practice the result of computing C := τ∗(I≤i). Because it
does not contain any loops, such a minimum deterministic automaton has the form of a
DAG. Working with a prefix-tree automaton can be emulated over the DAG by remem-
bering the depth i of the tree and the number of steps that were taken to get to the node
q1. The difference of these two values may be used to deduce the length of words whose
acceptance from q1 and q2 should be considered in Algorithm 3.6.1. This step is necessary
because several states of the prefix-tree automaton with different depths (corresponding
to different incoming paths) may be merged into a single DAG state, and the length to be
considered cannot be deduced just from the state itself.

3.6.3 Experiments with the Inference-based Regular Model Checking

We have implemented the ideas discussed above in a prototype tool written in YAP Prolog
using the FSA library [vN04]. We applied the tool to a variety of different verification
tasks described below. In addition, we have then also replaced the TB inference algorithm
in our model checking schema by several methods inspired by those described in [BHV04]
(Section 3.5) as we briefly report at the end of the section.

The Experiments Done and the Results Obtained Using the TB Algorithm

The experiments were similar to those used in [BHV04] and presented in more detail
in Section 3.5.5. They included verification of parametric systems (in the form of a bit
idealised parametric Bakery, Burns, Dijkstra, and Szymanski algorithms of mutual exclu-
sion), a simple push-down system modelling a program with several mutually recursive
procedures (the plotter control example from [EHRS00]), the alternating bit protocol as
a representative of systems with (lossy) queues, a Petri net modelling the readers-writers
problem with dynamically arising and disappearing processes that can be considered an
example of a system with unbounded counters (whose values were encoded in parallel in
unary), and a procedure for reversing linear lists as a representative of systems with un-
bounded recursive data structures. The simplified Bakery mutual exclusion algorithm was
modelled in several ways: with a parametric number of processes and the values of tickets
encoded by the positions of the appropriate processes in the word representing a configu-
ration, and with a bounded number of processes (three to five) with the tickets modelled
by explicit counters with values encoded in parallel either in binary (as in NDDs) or in
unary.

As in Section 3.5.5, we have mostly considered verification of invariance properties that
can be directly handled using reachability verification. However, we have tried dealing
with some more complex properties too. The push-down example where we checked some
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Table 3.3: Some results of experimenting with verification based on inference of regular
languages

Experiment Best setting T [sec] rg [%]

Bakery Bw, |QBad| 0.03 50

Bakery communal liveness Fw, 2|QInit| 0.36 90

Bakery counters – 3 processes Bw, 2|QBad| 8.69 70

Bakery counters – 4 processes Fw, |QBad| 143 92

Bakery – 5 processes, unary encoding Fw, 2|QInit| 229 45

ABP Bw, 2|QBad| 0.03 50

Burns Fw, 2|QInit| 0.77 98

Dijkstra Fw, |QBad|/2 1.16 92

Push-down System Bw, |QBad| 0.04 63

Petri net – Readers Writers Fw, |QBad|/2 323 90

Petri net – Faulty Readers Writers Fw, 2|QInit| 1.48 54

Szymanski Fw, |QBad| 0.76 94

List Reversion Fw, |QInit| 1.64 90

List reversion – trans. relation Fw, |QInit|/2 40.5 69

constraint on the calling order of the procedures is an example of dealing with a bit
more complex safety properties—to transform it to a reachability problem, we manually
composed the appropriate safety automaton with the model of the system. We have
also verified communal liveness in the Bakery example. In this case, we have manually
composed the appropriate Büchi automaton with the system being verified. We have
mostly considered correct systems, but we have as well run the tool over a faulty version
of one of the considered systems—namely the Readers/Writers example where we omitted
one of the Petri net arcs. We have mostly worked on the level of dealing with reachability
sets, but in the example of reversing lists, we have also worked with a reachability relation
represented by a transducer. (Using the reachability set computation, we checked that the
procedure outputs a list, but using the reachability relation—restricted to reachability from
initial states, i.e., to ιI ◦τ

∗, we checked that the output list is a reversion of the input one.)
Finally, in the experiments, we were trying both forward and backward verification—i.e.,
starting from the initial states or the “bad” states.

The results of the experiments obtained on a computer based on an Intel Pentium 4
processor at 1.7 GHz are summarised in Table 3.3. For each experiment, we give the best
result obtained. We say whether it was within forward or backward verification and what
the initial length of the words in the sample was (the considered values were: 1, |QBad|,
2|QBad|, |QBad|/2, |QInit|, 2|QInit|, and |QInit|/2). When we compare these results with
those of [BHV04] (which belong among the best in the field), we see that they are usually
a bit slower but comparable. In one case (the ABP example), the inference method was
even faster than the one of [BHV04]. Such results are very positive taking into account
that termination guarantees for [BHV04] are not very clear.

Finally, in the rg columns of Table 3.3, we give the percentage of time spent in gen-
erating the finite sample, which indicates that the treatment of this part of our method
deserves a special attention in the future optimisations.
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Using Other Inference Methods than the TB Algorithm

In a series of additional experiments, we have then replaced the use of the TB algorithm
in our model checking schema by several heuristics inspired by [BHV04]. In particular, we
have tried to generalise the obtained samples represented by finite automata by collapsing
any states of these automata having the same forward (or backward) languages of words
up to a certain length (wrt. the given set of final states or, alternatively, considering all
states to be final). Although the use of these heuristics turned out to be mostly slower than
the use of the TB algorithm, there were also cases (e.g., the Bakery communal liveness or
Burns experiments) where they were up to three times faster.

Inspired by the above, in the future, more experiments based on the generality of our
model checking schema, which allows us to plug in various inference algorithms, such as
[OG92, Lan92], can be done. An investigation of incremental inference algorithms like
RPNI2 [Dup96] could especially be interesting. They are based on refining an inference
hypothesis when new positive and negative examples are provided. They could easily
be used in our framework since we compute longer and longer configurations. A further
optimisation could be a use of dedicated finite-state model checkers to compute the set of
reachable configurations of bounded length efficiently.

3.7 Summary and Extensions of Regular Model Checking

We have presented regular model checking as a generic and usually fully automated method
for verifying a broad spectrum of various kinds of infinite-state and/or parameterised sys-
tems. In detail, we have discussed two particular approaches to regular model checking,
namely abstract regular model checking and one of the existing concepts of regular model
checking based on language inference. These approaches constitute our original contribu-
tion to the research on regular model checking achieved in a tight cooperation with our
foreign partners. Abstract regular model checking offers a very high efficiency whereas our
inference-based approach a nice compromise between efficiency and termination guaran-
tees.

Currently, we are working on a better implementation of the techniques, on their
possible optimisations for different contexts, and also on their use in various extensions of
regular model checking as mentioned below.

An application domain on which we in particular concentrated in the recent time is
the domain of verifying programs with dynamic linked data structures. In [BHMV05], we
proposed an original approach of using regular model checking in verification of programs
with dynamic linked data structures with one next pointer, which covers the frequently
used structures of singly-linked lists and cyclic lists. We will discuss this approach in
Chapter 4.

The first possible extension of regular model checking that one can think of is dealing
with regular languages not of finite words, but of more complex objects. The most natural
extension in this direction is probably dealing with regular sets of finite trees (i.e., regular
tree languages) which we discuss in Chapter 5. Such an extension appears to be very
useful as trees are quite common in computer science where they constitute the topology
of configurations of various distributed (parameterised) protocols, cryptographic protocols,
programs with recursion and parallelism, programs with dynamic data structures, etc.

Moreover, on top of a tree skeleton, one can successfully code even more general finite
graph structures. For this, one can, e.g., use routing expressions [KS93] representing
additional links between some tree nodes. The use of such techniques in regular tree

64



model checking is another subject of our current work. A direct use of automata on more
general than tree structures remains an open question—first, suitable notions of graph
automata are to be properly investigated.

Another extension of regular model checking for dealing with more complex objects
than finite words is dealing with infinite words leading to the so-called omega regular model
checking. Omega regular model checking can be useful in verification of liveness properties
[BLW05, VSVA05] and also, e.g., when dealing with systems whose configurations are
vectors of real numbers [BLW04]. Real numbers can be encoded in binary but we need
infinite words in order not to loose preciseness [BRW98]. This leads to a necessity of dealing
with Büchi automata for which, however, some needed automata-theoretic operations are
problematic (projection, determinisation, complementation). To circumvent this problem,
[BJW01] proposes a use of the so-called weak Büchi automata9 for which all the needed
operations are much easier.

Finally, one can think of going beyond (word/tree/omega) regular model checking
by dealing with various classes of non-regular languages for which one can find suitable
automata encoding. Here, one can think of using various kinds of push-down automata,
automata with constraints, etc., but one has to be very careful to find a class of languages
(automata) over which one can perform all the needed language-theoretic operations and
tests (or at least safely and efficiently approximate them). Finding such languages and
the associated automata is usually not easy. We discuss this issue and our contribution to
it, which consists in proposing and applying an original notion of tree automata with size
constraints, in Chapter 6.

9A weak Büchi automaton is a Büchi automaton whose set of states may be partitioned into exclusively
accepting or non-accepting disjoint subsets of states over which one can define a partial order such that
transitions can only be done from “bigger” to “smaller” states [MSS86].
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Chapter 4

Regular Model Checking and
Programs with Pointers

In this chapter, we discuss one of the most interesting and most important applications of
abstract regular model checking—namely, verification of programs manipulating dynamic
linked data structures. Such programs are in general difficult to write and understand,
and so the possibility of their formal verification is highly desirable. Formal verification
of such programs is, however, a very difficult task too. Dynamic allocation leads to a
necessity of dealing with infinite state spaces. Moreover, the objects to be dealt with are
the so-called program stores, i.e., the dynamic memory part of program configurations
containing dynamically allocated memory cells linked by pointers. Program stores have in
general the form of graphs whose shape is difficult to be restricted in advance (we call these
graphs heap graphs or shape graphs in the following). The problem is that the linked data
structures may fulfil some shape invariants at certain program points, but these invariants
may be temporarily broken in various ways at other program points while the program is
performing some operations over the given data structures.

Due to the mentioned usefulness and at the same time complexity, the field of formal
verification of linked dynamic data structures is currently a very active research area. A
number of different approaches differing in their generality and degree of automation have
been published, and new approaches are still being proposed and investigated. We present
a short overview of these approaches below. Then, we concentrate on our approach of
using abstract regular model checking for automatic verification of sequential non-recursive
programs manipulating dynamic linked data structures with one selector. The considered
class of structures includes traditional singly-linked lists and circular lists (possibly sharing
their parts) that belong among the most commonly used structures in practice. The results
are based on [BHMV05] where regular model checking was for the first time systematically
used in the given area—before, there has only been an isolated ad-hoc attempt to do so
in [BHV04] (mentioned in the previous chapter).

As a part of our contribution, we first provide a systematic encoding of the configu-
rations of the considered programs as words over a suitable finite alphabet. Potentially
infinite sets of configurations can then be represented by finite-state automata. Moreover,
we propose an automatic translation of non-recursive sequential C-like programs (without
pointer arithmetics and with suitably abstracted non-pointer data values) into finite-state
transducers applicable to the sets of program configurations represented by automata and
defining regular relations between these configurations. The translation is done statement-
by-statement, and one can then either take a union of all statement transducers or use
them separately. Since for some of the pointer manipulating statements, the translation
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cannot be achieved by providing a direct construction of a single transducer, we propose
to simulate them by a repeated application of some auxiliary transducers.

By repeatedly applying the transducer (or transducers) representing a program to the
automaton encoding a set of possible initial configurations, one can obtain the sets of
configurations reachable in any finite number of steps. It is, however, usually impossible
to obtain the set of all reachable configurations in this way—the computation will not stop
for most programs with loops. One thus has to consider techniques that will accelerate
the computation achieving termination as often as possible—a general termination result
cannot be obtained as the verification problem considered is clearly undecidable.

To accelerate the reachability computation, we use our abstract regular model checking
framework. However, compared to the results introduced in [BHV04] and presented in
Section 3.5, we propose a new set of abstractions that are more tailored for the given
domain and thus promise much better performance results. These techniques are based on
new language abstractions, which contrary to those introduced in [BHV04], are not defined
on the representation structures (i.e., the automata representing sets of configurations),
but defined on words (corresponding to configurations). Such abstractions are defined by
means of finite-state transducers following different generic schemas. The definitions of
these abstractions are guided by the observation that in the configurations of the programs
we consider there are some repeated patterns for which it is sufficient to remember their
number of repetitions precisely up to some fixed bound. If the number of repetitions is
higher than the bound, we abstract it to an arbitrary value. The abstraction schemas we
define are refinable in the sense that they define infinite sequences of abstraction mappings
with increasing precision. Therefore, our verification approach is based on computing
abstractions of the sets of reachable configurations, and on refining the abstractions when
spurious counterexamples are detected.

These techniques allow us to fully automatically compute safe overapproximations of
the state space of programs with 1-selector-linked dynamic data structures from whose
elements the non-pointer fields are abstracted away. In this way, we can automatically
check many important safety properties related to a correct use of dynamically allocated
memory—absence of null pointer dereferences, working with uninitialised pointers, mem-
ory leakage (i.e., checking that there does not arise any unfreed and unaccessible garbage),
etc. Furthermore, we can automatically handle the cases where a finite number of ele-
ments of the considered dynamic data structures are allowed to carry other than pointer
fields. Using this fact and a simple technique which we propose for describing the desired
input/output configurations, we can then automatically verify various properties relating
the input and output of the considered programs (e.g., that the output of a list reversing
procedure is really exactly the reverse of the input list, etc.). Finally, we show how the
techniques can be applied to dealing with linked dynamic data structures whose elements
contain any data fields of finite type too. In this case, a little help from the user may be
needed. However, the manual help of the user may be replaced by using a heuristic that
we have recently proposed (and which we briefly mention at the end of the chapter), or the
user may decide to use some of the slower, fully automatic, general-purpose acceleration
methods from Section 3.5.

We have implemented the proposed techniques in a prototype tool and tried it out
on a number of procedures manipulating classical singly-linked lists as well as cyclic lists.
The results are very encouraging and show the applicability of our approach. Moreover,
the approach provides a starting point for using regular tree model checking for handling
programs over more complex data structures as was indeed recently done in [BHRV06b].
We will briefly discuss the generalisation based on abstract regular tree model checking
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at the end of Chapter 5. This approach belongs among the most general and at the same
time fully automated approaches proposed.

Below, we first give an overview of the various proposed approaches to verification
of programs with dynamic linked data structures—we do not consider only singly-linked
structures but also more general structures (which we cannot verify by our original tech-
niques presented in this chapter, but which we can handle via their generalisation men-
tioned in Chapter 5). Then, we present the way we encode programs over singly-linked
dynamic data structures in our framework. We go on by discussing the specialised ab-
stractions we proposed. Finally, we give some experimental results and comment on the
possible future work.

4.1 An Overview of the Existing Approaches

There exists a wealth of approaches to the verification of programs with dynamic linked
data structures based on various principles and having various advantages and disadvan-
tages. We first mention two often cited approaches linked to the tools PALE and TVLA.
Then, we discuss other approaches based on logics, automata as well as other principles.
However, none of these approaches can be considered to give the final answer yet, and
so—as we have already said above—the research in the given area is very live. That is
why, despite we hope to give a wide and interesting overview of the existing alternative
approaches, it is likely that already during writing of these thesis some new approaches
could have appeared.

4.1.1 PALE

PALE (i.e., the Pointer Assertion Logic Engine) [MS01] allows a semi-automated verifi-
cation of programs manipulating dynamic linked data structures. The semi-automation
means that the user of PALE must manually provide loop invariants—loop free code frag-
ments can already be handled automatically. The first version of the approach behind
PALE [JJKS97] was intended for programs manipulating singly-linked lists, and the sec-
ond version [EMS00] for programs manipulating trees. In the last version [MS01], PALE
handles programs manipulating a quite general class of linked data structures definable
using the so-called graph types [KS93].

Graph types use a tree backbone to encode some of the next pointers involved in the
considered linked data structures. The remaining next pointers may be encoded via the so-
called routing expressions that allow one to go up and down in the tree backbone and also
test properties of the encountered nodes (testing whether they are leaves, the root, or they
correspond to a certain variant of a node of the given structure). This way singly-linked
and doubly linked lists, trees, as well various other structures may be encoded (including,
e.g., lists with head/tail pointers, trees with leaves interconnected into a list, trees with
nodes additionally linked in the post-order way, etc.). A restriction is that the destination
of a routing expression must be deterministic. Moreover, the meaning of next pointers is
fixed in advance (though in possibly different ways for different program points).

PALE uses a special monadic second-order logic on graph types to express entry and
exit conditions of programs, assertions, and loop invariants that must be provided by the
user (and that talk about the shape properties of the involved linked data structures).
The various pointer manipulating statements are automatically translated to syntactic
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manipulations on these formulae. Starting from an entry condition or an invariant, PALE
can compute a formula expressing the effect of a loop free code fragment. This formula
may then combined with the negation of an assertion, loop invariant, or exit condition to
check whether some undesirable behaviour exists. For deciding the formulae, an encoding
to the weak monadic second-order theory of two successors (WS2S) is used.

A decision procedure for WS2S is implemented in MONA [KM01] using the fact that
the set of satisfying interpretations of a WS2S formula can be encoded using a finite
tree automaton. The decision procedure is non-elementary. To increase the efficiency in
as many practical examples as possible, MONA is based on BDDs [Bry86] and a special
concept of the so-called guided-tree automata [BKR97]. Experiments on multiple practical
examples show that these heuristics are really quite powerful. However, a problem is
still the considerable need of human ingenuity in specifying loop invariants that can be
sometimes quite tricky.1

4.1.2 TVLA

TVLA (the Three Valued Logic Analyser) [SRW02] is based on using the Kleene’s 3-valued
interpretation [Kle87] of predicate logic with transitive closure on graphs. Predicate logic
with transitive closure is used for defining the so-called core and instrumentation predicates
over particular memory nodes or their pairs. Core predicates capture the basic semantics
of memory structures (e.g., that a node is pointed to by some variable, that a node is a
successor of some other node, etc.). Instrumentation predicates are defined over the core
predicates and are specific to particular classes of linked data structures—e.g., they can
say that a memory node is shared, that a node n fulfils the condition of doubly-linked lists
(requiring that when we go forward from n and then immediately backward, we get back
to n), etc.

Sets of reachable memory configurations are represented in an abstract way as 3-valued
logical structures—i.e., as a set of memory nodes and an interpretation of the involved
predicates over them. A finite representation of infinite sets of memory configurations
is achieved via the so-called canonical abstraction which introduces summary nodes—
roughly speaking, the concrete memory nodes that satisfy the same abstraction predicates
(a designated subset of the involved predicates) are merged into a single summary node.
When this abstraction happens, some of the predicates may loose a definite value on some
of the nodes. That is why the third logical value interpreted as “may be” is used.

The semantics of particular program statements is encoded using predicate update
formulae linking the current and future values of the predicates. Predicate update formulae
are provided for core predicates; for instrumentation predicates, they are either provided
manually, or we can use heuristics to have them derived automatically [RSL03]. To make
the method more precise, the update on 3-valued structures first partly concretises the
structures via the so-called focus operation (a single structure may be split to several more
precise ones where the particular summary nodes are replaced by more precisely described
nodes allowing one to perform the updates in a definite way). Then, the updates are
performed, and finally, the resulting structures are abstracted again. In the process, some
basic consistency checks are also performed in the so-called coerce operation in order to
rule out clearly impossible cases. The focus and coerce operations may in effect also cause
the so-called materialisation of a non-summary node from a summary one.

The method is quite general, but in the original version described above still not fully
automatic as the user has to come up with the right instrumentation predicates (which

1We have our experience with such a task from verifying preservation of the full definition of binary
search trees after certain operations in [EV05].
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might not always be easy as we experienced, e.g., in [EV05], or as the work presenting
the right predicates for working with circular lists [MYRS05] shows). Recently, a heuristic
based on inductive logic programming has been introduced to automatically learn instru-
mentation predicates [LRS05]. The learning approach has so-far been tested on several
examples of sorting algorithms and algorithms over binary search trees. A further in-
vestigation of heuristics for learning instrumentation predicates as well as questions of
improving the performance and scalability of the approach seem to belong among quite
interesting subjects for future work in the given area.

4.1.3 Other Logic-based Approaches

Separation logic. Separation logic [Rey02] is an extension of Hoare logic for reasoning
about programs manipulating pointers and dynamic linked data structures. The key new
ingredient in separation logic is the separating conjunction ∗. The formula P ∗ Q holds
iff P and Q hold in disjoint parts of the memory. The introduction of the separating
conjunction allows a local, concise, and modular reasoning about heap manipulations.
Otherwise, one has to always reason globally about the entire heap—a modification to
a single cell may have a vast impact due to the possible aliasing in the heap, i.e., due
to different next pointer chains leading to the same cell. Separation logic comes with a
number of axioms and inference rules and allows for manual or semi-automated verification
(theorem proving). However, recently, there are beginning to appear works on using
separation logic (or at least the idea of the separating conjunction) as a symbolic model of
memory configurations in fully-automated approaches. The work [DOY06] presents a fully
automated method for verification of safety of programs manipulating singly-linked lists
using an acceleration of the computation based on (roughly speaking) ignoring all facts
that depend on a point in a list that is not a named position. In [DBCO06], verification
of termination is even considered, and in [CDOY06], a possibility of dealing with pointer
arithmetics is discussed.

Alias logic. Alias logic [BIL03] is another logic for reasoning about programs manipu-
lating dynamic linked data structures. It allows for explicit reasoning about aliasing. The
work [BIL03] presents a proof system for the logic. Let us add that the logic is defined
over a storeless memory model (i.e., the heap is not represented as a graph) viewing a
heap as a collection of languages: a memory node is represented by the regular language
of the paths leading to it through the heap interpreted as a finite automaton with the
given node taken as the only final state, and the initial states corresponding to the values
of the pointer variables. A similar approach is used in the works of Jonker, Deutsch, and
Venet mentioned below.

Predicate abstraction. A lot of the recent successes of software model checking is due
to the technique of predicate abstraction [GS97], which abstracts a concrete program to a
boolean one where the boolean variables record various predicates about the concrete state
of the program (e.g., the fact that the value of a certain integer variable is positive, that
the value of a certain integer variable is bigger than that of another integer variable, etc.).
However, the traditional works on software model checking using predicate abstraction do
not consider programs manipulating dynamic linked data structures.

An attempt to use predicate abstraction over dynamic linked data structures was
published in [DN03]. The approach concentrates on using various reachability predicates
and from them derived predicates like sharing and cyclicity. The method starts with
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the predicates used in defining the shape properties to be checked and uses a specially
proposed weakest precondition computation to discover further predicates to be tracked
at particular program points. A human interaction is needed to generalise the obtained
predicates such that they are sufficient for verification of the given properties. The method
has been tested on several classical programs manipulating singly-linked lists.

Another work applying predicate abstraction to verification of programs manipulating
dynamic linked data structures is [BPZ05]. In particular, singly-linked data structures are
considered. The work uses predicates recording the fact that some variable is null and that
from some variable the node pointed to by some other variable is transitively reachable.
The initial predicates are taken from the program conditions and from the condition to
be verified. If more predicates are needed, they are to be added manually. The abstract
program is derived automatically through a small model property (cut off) of the logic
in which the considered programs are specified. The work considers even verification of
termination via manually provided ranking functions.

Predicate abstraction over programs manipulating possibly cyclic singly-linked lists is
discussed also in [MYRS05], which considers the use of canonical abstraction (the abstrac-
tion behind TVLA) too. The predicates used record aliasing between pointer variables
and the existence of uninterrupted list segments between pointer variables (or a pointer
variable and null) of length one, two, or longer—uninterrupted segments are segments into
the middle of which no pointer variable is pointing and no sharing occurs there. The best
possible predicate transformer is provided for these predicates and the common pointer
manipulating statements. The corresponding canonical abstraction uses the predicates
proposed in [SRW02] and, in addition, predicates recording the existence of uninterrupted
list segments between pointer variables (of any length in this case). Although it is not
the case of the corresponding predicate and canonical abstraction presented in the work,
[MYRS05] also notes that, in general, exponentially more predicates may be needed in
predicate abstraction compared to canonical abstraction.

Finally, in [BHT05], the authors do not introduce a new predicate abstraction over
linked data structures, but combine predicate abstraction over non-pointer data struc-
tures of a program with the use of canonical abstraction over linked data structures,
thus combining TVLA with the software model checker Blast [HJMS03]. The proposed
counterexample-guided refinement loop allows to incrementally increase the precision of
the employed canonical abstraction. This is achieved by incrementally increasing the
set of the tracked pointer variables for which the corresponding points-to predicates are
generated, the subset of these variables for which the points-to predicates are consid-
ered abstraction predicates in canonical abstraction, and the set of unary node predicates
about the contents of memory nodes. Moreover, the integration happens in the context of
lazy, interpolant-based analysis, and so not always the entire symbolic state graph must
re-generated, and the refinement may be applied to only certain program locations.

First-order reasoning. There have also been proposed several approaches based on
first-order axiomatisations of various notions of reachability in linked structures usable
for automated deduction (theorem proving). A recent work is, e.g., [LQ06] that considers
singly-linked as well as doubly-linked acyclic as well as cyclic lists. Cyclic lists are supposed
to be well-founded in the sense that each loop contains a distinguished head cell pointed
to by some variable providing a handle on the loop (this condition is checked during the
verification). The reachability predicates used in the work capture reachability from a cell
without passing a head cell and the notion of the closest head cell. The proposed first-
order axiomatisation of these predicates allows for an almost automatic (and sometimes
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even fully automatic) verification of various practical pointer manipulating procedures
(e.g., list reversion, insertion, deletion, union of sets implemented as lists). Moreover,
methods based on indexed predicate abstraction can sometimes be used for an automatic
synthesis of loop invariants. One of the nice features of this approach is that it can be
easily combined with reasoning about, e.g., integers or arrays.

4.1.4 Automata-based Approaches

Automata-based approaches to verification of programs with dynamic linked data struc-
tures include, of course, our approach based on abstract regular model checking presented
in detail below (and its generalisation to abstract regular tree model checking mentioned in
Chapter 5). In Chapter 6, we further propose an original class of tree automata with size
constraints applicable in a semi-automated verification of programs manipulating balanced
tree structures. Automata are also in the background of some of the above presented logic-
based approaches where they may serve as a basis of the corresponding decision procedures
as, e.g., in PALE.

Automata in may-alias analysis. Apart from the above, automata are used, for in-
stance, in [Jon81, Deu94, Ven99] as well. In [Ven99] following the earlier works [Jon81,
Deu94], the special problem of may-alias analysis is primarily considered. The approach
uses a symbolic representation of memory structures consisting of tuples of automata (one
for each pointer variable) and alias relations (using constraints). A special form of widen-
ing on this representation is used to accelerate the computation. Alias analysis is a bit
less ambitious than the other approaches considered here as it concentrates mainly on dis-
covering which pointers (and pointer sequences) may point to the same memory locations
at different times.

Top-down parity tree automata. An interesting automata-based approach has re-
cently been presented in [DEG06]. It is based on top-down parity tree automata working
on memory shape graphs unfolded in a natural way into infinite trees. The authors define
a significant fragment of the programming constructions commonly used for dealing with
pointers and a fragment of correctness properties yielding a verification problem that is
decidable using their approach. In particular, the procedures they consider must have a
single pointer variable called a cursor that is used for iterating though the structure (with
possibly more next pointers) and for modifying the structure (the modifications can in
general happen in a bounded neighbourhood of the cursor). Furthermore, the procedures
are limited to a finite number of destructive passes though the structure. Such proce-
dures can be automatically translated to the considered tree automata that encode in a
single merged tree the relation of the memory configuration before and after performing
the procedure (the memory nodes in the tree are flagged as nodes newly created, deleted,
and preserved). Then, a product of the procedure automaton with an automaton describ-
ing possible inputs and with an automaton describing undesirable outputs is created and
tested for emptiness. The properties that can be encoded this way include connectivity
properties (reachability, cyclicity, sharing), data-dependent properties (sortedness) as well
as the basic memory consistency properties (dangling pointers, null pointer dereferences,
etc.). The method is polynomial in the size of the checked procedure and the automata
describing possible inputs and undesirable outputs.

A variant of the method based on checking satisfiability of formulae of CTL with past
temporal operators used for describing the inputs, outputs, and the checked procedures is
then also described.
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Counter automata. Finally, recently, we participated on a proposal of a method for ver-
ifying programs manipulating singly-linked structures that is based on encoding their oper-
ation on given input structures in the form of a counter automaton [BBH+06b, BBH+06a]
(a work going in a similar direction was reported in [BFL06], and some preliminary work
appeared in [BAN04, BI05]). The control states of the counter automaton encode the
current shape graph of the memory with all the uninterrupted next pointer chains (i.e.,
chains with no pointer variables pointing into their middle and with no sharing within
them) contracted to a single node. The counters then encode the length of these chains.
Program statements are automatically translated to appropriately changing the control
state of the counter automaton (i.e., the shape of the memory) as well as the values of
the counters. If the program has n pointer variables, we suffice with a counter automaton
with at most 2n counters and O((2n)2n) control states (in practice, these numbers may
often be much smaller). The counter automaton precisely encodes the behaviour of the
program—in [BBH+06b, BBH+06a], bisimilarity between the operation of the program
and the counter automaton is shown.

Most verification problems on the obtained counter automata are of course undecidable,
but one can use any of the numerous semi-algorithms proposed for analysing counter
automata—including, e.g., (abstract) regular model checking—to successfully verify many
real-life situations. Moreover, tools like ARMC [Ryb] based on [PR04a, PR04b, PR05,
CPR05] can even be used for an automated termination checking on the counter automata
encoding the programs. In addition, in [BBH+06b, BBH+06a], it is also proved that if the
counter automaton derived from a program is flat (i.e., if its control graph has no nested
loops), reachability and termination analysis of the program are decidable.

Further, we have also extended the technique to automatically track ordering proper-
ties among the contents of the memory nodes. The resulting technique allowed us, e.g., to
fully automatically verify the basic memory consistency properties, shape preservation, re-
versedness or sortedness as well as termination for the reversion, bubblesort and insertsort
procedures working on singly-linked lists.

4.1.5 Other Approaches

Timestamps. An interesting approach to alias analysis has been proposed in [Ven04]. It
is based on identifying newly allocated memory objects by numerical timestamps derived
from values of the various numerical variables (as, e.g., loop variables) of the analysed
program at the time of an object creation. Methods for analysing programs manipulating
numerical data are then used to handle relations among the values of the timestamps of
the objects that are manipulated at various positions of a program.

Grammar-based shape analysis. In [LYY05], a method based on using context-free
grammars with a single attribute in combination with contracted shape graphs has been
proposed. A memory configuration is represented as a memory shape graph whose parts
that are not directly pointed by pointer variables and are unshared are contracted to
a single summary node with an attached nonterminal. The derivation tree of the non-
terminal describes the structure hidden behind the summary node. The grammar rules
to be used are automatically derived when contracting (or folding) the shape graphs.
Moreover, shape graphs that differ only in the names of their nodes and in the attached
non-terminals are unified—the right-hand sides of the rules of the corresponding non-
terminals are then merged. Finally, some further widening is done on the grammar rules
by unifying two non-terminals (or a non-terminal and a terminal representing null) when
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they appear in the same position in some right-hand side, and by unifying non-terminals
having “similar” right-hand sides (i.e., having right-hand sides of the same length). To
encode some form of sharing or loops, the non-terminals in the grammar rules may have
an attribute that may refer to a node of a shape graph, and may be passed on in the
grammar productions or be eventually used as a terminal symbol.

The involved overapproximation may be quite aggressive (and there is no refinement
proposed here), yet the analysis can successfully (and efficiently) be used for verifying
many practical procedures manipulating (even quite complex) linked data structures: The
method has been tested on sample procedures manipulating singly-linked as well doubly-
linked lists, trees—including the Deutsch-Schorr-Waite tree traversal (a non-recursive
traversal that temporarily swaps the pointers in a tree to remember the way back to
the root), trees with parent pointers, and binomial heaps (based on lists of trees with
parent pointers). Structures that cannot be handled are, e.g., doubly-linked lists with
additional pointers (such as the tail pointer) where more attributes of the grammar would
be needed.

Memory patterns. In [YKB02], a method for verifying dynamic linked data structures
based on abstracting away the number of adjacent occurrences of certain patterns (sub-
graphs) in memory shape graphs was proposed. The memory patterns were to be provided
by a user of the method. In [EV05, ČEV06], we have improved the method by a heuristics
for an automated discovery of memory patterns. The technique showed to be very suc-
cessful for programs manipulating dynamic linked data structures with a linear skeleton
and possibly some additional next pointers. This way, programs manipulating (cyclic as
well as acyclic) singly-linked and doubly-linked lists (extended, e.g., with head and/or tail
pointers) may be verified.

Graph rewriting. A quite general formalism that can be used (among others) for de-
scribing pointer manipulating programs is the formalism of graph transformation systems
(GTS). In [BCK01], a technique for analysing reachability in GTSs has been proposed.
It is based on overapproximating their behaviour by the so-called Petri graphs. A Petri
graph consists of a hypergraph and a Petri net whose places correspond to the edges of the
hypergraph. Reachable markings of the Petri net encode which hyperedges may appear in
the encoded hypergraphs. A Petri graph is obtained by unfolding a GTS (starting with the
initial graph and extending it gradually by the appropriate encoding of the graphs result-
ing from applying the rewriting rules) and folding back repeated occurrences of some of
the subgraphs resulting from the rewriting. In [BCE+05], this technique has been applied
to verification of insertion in red-black trees (not taking into account the balancedness
requirement). Encoding general pointer manipulating programs into the framework of
GTS and attempts to verify such programs using the techniques of [BCK01] (and their
improvements, e.g., by a counterexample guided refinement schema [KK06]) seems to be
the future work of the authors of the technique.

Contracted shape graphs. In [LAIS06], the authors propose a method intended (in its
basic form) for verifying safety properties of programs manipulating dynamic linked data
structures that do not contain any cycles even when the orientation of the next pointers is
ignored (which includes acyclic singly-linked lists, trees, and trees with a limited amount
of sharing). The abstraction on which the method is built is based on contracting parts
of memory heap graphs that are unshared and do not contain nodes directly pointed by
pointer variables into a single summary node. All the next pointers that are originally
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within the contracted subgraph form self-loops on the appropriate summary node after
the abstraction. The work comes with the best abstract transformers defined on the given
abstract representation for the various pointer manipulating statements. The method
turns out to be quite efficient on a number of practical examples. Moreover, there are
extensions to the method that allow one to handle simple loops in memory structures
(e.g., cyclic singly-linked lists) and, with a little help from the user, also structures with
parent pointers (including doubly-linked lists and trees with parent pointers). Moreover,
the restricting conditions may be temporarily broken if they are restored at loop bound-
aries. Further, a method is provided for computing an abstract overapproximation of
memory configurations satisfying a given formula in the first-order logic with transitive
closure. Such conditions may be used by the user for specifying pre- and post-conditions
of procedures, and hence a support for a semi-automated modular analysis is obtained.

Boolean heaps. In [WKZ+06], a complex approach combing a use of (sometimes specif-
ically extended) decision procedures, theorem provers and several new concepts for an
abstract representation of heap graphs is proposed. Heaps are represented in the form of
the so-called boolean heaps that are disjunctions of universally quantified Boolean combi-
nations of unary predicates over heap nodes. In this heap abstraction, the links between
heap nodes are hidden into the unary predicates associated with particular heap nodes
(as, e.g., the successor of the given heap node is pointed by some pointer variable) rather
than being captured by binary predicates. A concrete heap is described by a boolean heap
if one of the top-level disjunctions of the boolean heap is a universally quantified formula
whose body is satisfied for every node of the heap. In addition, global, nullary predicates
about the heap are allowed too (as, e.g., a predicate saying that two pointer variables
point to the same memory node). The predicates to be used are partly obtained by a
syntactic analysis of the code to be analysed and the provided pre- and post-conditions
and structure invariants, and partly provided by the user.

The predicates used in the above may speak about reachability between memory nodes.
The approach distinguishes basic and derived next pointers. For the derived next pointer
links, the user must provide invariants defined over the basic links that must hold at pro-
cedure entry, exit, and loop points. This information is then used to modify the formulae
being dealt such that they speak about a tree skeleton of the structure, and the MONA
decision procedure over trees may be used to decide them (other kinds of skeletons may be
considered when using other decision procedures). The predicates may further also speak
about other than linking properties—e.g., they may speak about numerical sortedness of
the contents of memory nodes, etc. To deal with them, special methods for combining
decision procedures and eliminating the quantifiers introduced by the abstraction (by in-
stantiating the quantified nodes wrt. which pointer variables they are pointed to) are
proposed.

The approach uses a syntactical weakest precondition computation combined with the
use of decision procedures (with the above mentioned extensions) or a theorem prover
for entailment checking to derive loop invariants of the procedures being checked. Sub-
sequently, the invariants and the provided pre- and post-conditions are used to generate
verification conditions that are then checked by (extended) decision procedures and/or a
theorem prover. The approach has been used for verification of certain procedures manip-
ulating singly-linked as well as doubly-linked lists, trees, trees with parent pointers, sorted
lists, and two-level skip lists (having an additional level of next pointers skipping some
nodes in the list).
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4.2 From Programs to Transducers

After having gone through the alternative approaches, we now concentrate in detail on our
own approach based on using abstract regular model checking. In this section, we describe
the translation we propose for automatic verification of sequential, non-recursive programs
with 1-selector-linked dynamic data structures in the framework of regular model checking.
Our translation is general enough to cover any program of this kind (not containing pointer
arithmetics and not explicitly covering the possibly necessary abstraction of non-pointer
data).

We first describe how to encode as words program stores (i.e., heap graphs) of the
considered class of programs. Then, we propose an encoding of the standard C pointer
operations (apart from pointer arithmetics) in the form of transducers. Some of the pointer
operations cannot be translated directly to a single transducer, therefore we propose to
simulate their effect by computing a limit of a repeated application of certain simple
auxiliary transducers.

In the following, we will use as a running example the following procedure reversing a
list l. We suppose the data fields normally present in the elements of the data type List

to be abstracted away and just the next-pointer fields to be preserved.

List x,y,l;

l1: x = null;

l2: while (l != null) { // i.e., if (l!=null) goto l3; else goto l7;

l3: y = l->next;

l4: l->next = x;

l5: x = l;

l6: l = y; } // i.e., l = y; goto l2;

l7: l = x;

l8: // end of program

Before proceeding to the details of our encoding, let us note that PALE (or more pre-
cisely its version for singly-linked structures) based on [JJKS97] uses a similar encoding
of configurations as the one we describe in the following. The possibility of sharing parts
of the lists is, however, not considered there. Moreover, as we have already said above,
there is no translation of the programs to transducers for manipulating sets of configu-
rations in the PALE approach, the effect of the program is expressed by manipulating a
logical description of the configurations, and the approach is not as automatic as ours.
Furthermore, representations of linked memory structures based on automata were used in
[Jon81, Deu94, Ven99, BIL03] too. In [Ven99] following the earlier work of [Jon81, Deu94],
the special problem of may-alias analysis is primarily considered and a different symbolic
representation of memory structures is used—it is based on tuples of automata (one for
each pointer variable) and alias relations (using constraints). In [BIL03], also mentioned
above, an alias logic with a Hoare-like proof system is introduced. There, one memory
structure is represented as a collection of automata whereas we represent a set of memory
structures with one automaton.

4.2.1 Encoding Stores as Words

Basically, a store is encoded as the concatenation of several words (separated by a special
symbol), each of them representing a list of elements. Successive elements of these lists
are given from the left to the right, with positions of pointer variables marked by special
symbols. We suppose for the moment that list elements contain no data—later we show
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Figure 4.1: A store with sharing

that adding data of a finite type is not a problem. We also suppose for the beginning that
the store does not contain cycles nor shared parts (i.e., no two different next-pointers point
to the same list element). To encode such stores as words, we use the following alphabet
Σ: For every pointer variable x used in the program at hand, we have x ∈ Σ, and Σ further
contains the letters | to separate lists (and some special parts of the configurations), / to
separate list elements (i.e., / represents a next-pointer), # to express that a next-pointer
points to null, and ! to denote that the next-pointer value is undefined.

Then, we can encode a store without sharing and cycles as a sequence of three parts
separated by the symbol | as follows:

• The first part contains a sequence of pointer variables whose values are undefined.
In order not to have to consider all their possible orderings, we fix in advance a
certain ordering on Σ that is respected here as well as in similar situations below.

• The second part contains pointer variables pointing to null.

• Finally, the third part contains the list sequences separated again by the symbol |.
Each list sequence is encoded as follows: Every list element is represented by a (pos-
sibly empty) sequence of pointer variables pointing to it, lists elements are separated
by the symbol /, and lists end either with the symbol # (null) or ! (undefined).

For example, the word x y | | l / / # | encodes a possible initial configuration of the
list reversion example: x and y are undefined, no variable points to null, and l points to
a list with two elements.

Now, regular expressions (or alternatively finite-state automata) can be used to de-
scribe sets of stores. For instance, the regular expression (x y | | l /+ # |) + (x y | l |)
encodes all possible initial stores for our list reversion example.

Notice that in our encoding, we do not allow garbage (parts of the memory not accessi-
ble from pointer variables). As soon as an operation creates garbage, an error is reported.
In fact, such a situation corresponds to a memory leak in C (in Java, on the other hand,
we can always perform “garbage collection” and remove the garbage).

Remark. Clearly, pointer variables appear exactly once in every word. The separator
| and the symbols # and ! appear a bounded number of times since we do not consider
stores with garbage. Finally, the symbol / can appear an unbounded number of times.

4.2.2 Lists with Sharing and/or Loops.

To encode sharing of parts of lists as, for example, in Figure 4.1, we extend the alpha-
bet Σ by a finite set of pairs of markers (mf , mt, nf , nt, etc.). A “from” marker Xf

may be used after a next-pointer sign / to indicate that the given next-pointer points
to an element marked by Xt (the corresponding “to” marker). Then, e.g., the word
| | x / mf | y / / nf | nt mt / / # | encodes the store of Figure 4.1.
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As one can easily see, the above store could be encoded in several other ways too
(for instance, as | | x / nt / / # | y / / nf |). Although we partially normalise the
encoding by imposing a certain ordering on the symbols that are attached to the same
memory location, we do not define a canonical representative of the store. However, our
experimental results (see Section 4.4) show that this is not an obstacle to a practical
applicability of our method. Furthermore, using a canonical form would complicate the
encoding of program statements.

Notice also that markers allow us to encode circular lists (as, e.g., | | x nt / / nf |
corresponding to a circular list of two elements pointed to by x).

It is not difficult to see that given a store with k pointer variables encoded with more
than k pairs of markers, one can encode the same store with at most k markers provided
that no garbage is allowed: If a “to” marker is at the beginning of a sequence of cells
that is not accessible without using markers, we can put these sequence directly in place
of the corresponding “from” marker and save one pair of markers. For example, the store
| | x / mf | y / / nf | nt mt / / # | of Figure 4.1 can be described with one pair of markers
as | | x / nt / / # | y / / nf | or also as | | x / mf | y / / mt / / #|.

Typically, the number of markers that is really needed is even smaller than k as we
will demonstrate in our experiments.

4.2.3 Encoding Program Statements as Transducers

We now describe our encoding of program statements as transducers. We consider non-
recursive C programs without pointer arithmetics. Initially, we also suppose all non-
pointer data manipulations to be abstracted away—we briefly return to handling them
later. Such programs may easily be pre-processed to contain only statements of the
form pointer assignment; goto l; or if (pointer test) goto l1; else goto l2;.
Moreover, by introducing auxiliary variables, we can eliminate multiple pointer derefer-
ences of the form x->next->next and consider single dereferences only.

To encode full configurations of the considered programs, we extend the encoding of
stores by adding a letter for the line of the program the control is currently at (followed by
a separator |). Moreover, for the needs of our verification procedure, we add a single letter
indicating the so-called computation mode. The mode is either n (normal), e (error—
a null pointer dereference or working with an undefined pointer has been detected), s
(shifting, used later for implementing the pointer manipulation statements that cannot be
implemented as a single transducer), and u (unknown result that arises when an insufficient
number of markers is used). For instance, the initial configurations of the list reversion
example are then (n l1 | x y | | l /

+ # |) + (n l1 | x y | l |).

Conditional jumps based on tests like x==null or x==y are now quite easy to encode.
The transducer just checks whether x is in the null section or in the same section as y

(taking / and | as section separators), and according to this changes the letter encoding
the current line. If x or y is in the undefined section, we go to the error mode. Similarly,
assignments of the form x=null or x=y are easy to handle—x is deleted from its current
position (using an x/ε transition) and put to the section of y (using an ε/x transition).

A slightly more involved case is the one of tests based on the x->next construct and
the one of the y=x->next assignment. Apart from generating an error when x is undefined
or null, one has to consider the successor of x, which may involve going from a “from”
marker to the appropriate “to” marker. However, as the number of markers is finite, the
transducer can easily remember from which marker to which it is going and skip the part
of the configuration between these markers.
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Figure 4.2: An example store, the store after the statement l->next=x, and after a rear-
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Adding/removing markers. The most difficult case is then the one of the l->next=x

assignment, which is a destructive pointer update. The transducer first tries to commit
the operation by using a pair of unused markers (say mf/mt) out of the in advance chosen
set of marker pairs (an unused marker pair is one that does not appear in the current
configuration word). Then, behind the section of l, the transducer putsmf , and marks the
section of x bymt. For instance, in the list reversion procedure, n l4 | | | x / / # | l / y / # |
is transformed via l->next=x into n l5 | | | mt x / / # | l / mf | y / # | as shown in
Figure 4.2 (a), (b).

However, there may not be any unused markers left. In such a case, the transducer
tries to reclaim some by re-arranging the configuration. This can be done by moving
some sequence of cells that starts with a “to” marker directly into the place of the cor-
responding “from” marker (provided these markers do not constitute a loop). As ex-
plained in Section 4.2.2, this is always possible provided the chosen number of pairs of
markers is sufficiently big (more than the number of pointer variables). For example,
n l5 | | | mt x / / # | l / mf | y / # | can be re-arranged to n l5 | | | l / x / / # | y / # |
as sketched in Figure 4.2 (c).

The above operation, however, cannot be encoded as a single transducer as it may
require an unbounded sequence (such as the list after x in our example) to be shifted to
another place, and a finite-state transducer is incapable of remembering such sequences.
To circumvent this problem, we use a very simple transducer τ which does one step of
the shifting—i.e., it shifts a single element of the sequence by deleting it from its current
location and re-producing it at its required location. The desired result is then the limit
τ∗(Conf) where Conf is a regular set of configurations on which the operation is applied.
The limit (or an upper approximation of it) is computed using our abstract reachability
analysis techniques. In order not to mix half-shifted sequences with the ready-to-use
ones, the shifting is done in a special computation mode when no other operations are
possible.2

If some marker has to be eliminated but this cannot be done, we go to the u mode and
stop the computation. Such a situation cannot happen when we use as many markers as
pointer variables. Nevertheless, it may happen when the user tries to use a smaller number
of them with the aim of reducing the verification time (which is often, but not always
possible). If one does not want to use markers at all, the two operations of introducing
and eliminating a pair of markers (including shifting) are done at once.

Finally, the remaining malloc(x) and free(x) operations are again easy to encode.
The malloc(x) operation introduces a sequence of elements with a single element, pointed

2Shifting could be implemented as an atomic, special purpose (and rather complex) operation directly
on the automata too.
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to by x, and with an undefined successor. The free(x) operation removes an element,
makes x and all its aliases undefined, and possibly makes undefined the next-pointer
originally leading to x.

Adding Data Values to List Elements. The encoding can easily be extended to
handle list elements containing data of a finite type. Their values are added into Σ and
then every memory cell encoded as a sequence surrounded by / and/or | contains not
only the pointers (markers) pointing to it, but also the appropriate data value. The tests
and assignments on *x may then easily be added by testing whether the appropriate data
letter is in the section of x or changing the data letter in this section.

4.3 Specialised Abstract Regular Model Checking

We now introduce two specialised classes of abstractions to be used to solve the safety
regular model checking problem

τ∗(Init) ∩Bad = ∅ (4.1)

on the above introduced encoding of configurations and transitions of programs manipu-
lating singly linked dynamic data structures.

As described in Section 3.5, the representation-oriented abstractions of [BHV04] consist
in defining finite-range abstractions on automata used as symbolic representation struc-
tures for sets of configurations. The fact that these abstractions are finite-range ensures
that a single verification run always terminates leading to either an answer to the given
verification question or to a refinement. The general principle of these abstractions is to
collapse automata according to some given equivalence relation on their states regardless
of the kind of the represented configurations or the analysed system. Here, we adopt an
alternative approach by considering configuration-oriented abstractions which are defined
on configurations. This approach allows us to define abstraction techniques which are
more adapted to the application domain we are considering here.

In the next subsections, we discuss two generic schemas for defining families of refinable
configuration-oriented abstractions. Instances of these schemas have been implemented in
a prototype tool and used in several experiments (see Section 4.4). It turned out that
this approach leads to more efficient verification techniques than the previous one for the
application domain we are considering here.

4.3.1 Piecewise 0-k Counter Abstractions

The idea behind the first configuration-oriented abstraction schema we introduce is to
abstract each word by (1) considering some finite decomposition of it and by (2) applying
the 0-k counter abstraction to each piece of the word in this decomposition. The 0-k
counter abstraction looses the information about the ordering between symbols and only
keeps track of their numbers of occurrences up to k. We, in particular, decompose the
words in a unique way according to the first occurrence of the particular alphabet symbols.

Formally, for an alphabet Σ and a word w ∈ Σ∗, let dec(w) = (a1, w1, a2, w2, · · · , an, wn)
be such that w = a1w1a2w2 · · · anwn, ∀i, j ∈ {1, . . . , n} : ai ∈ Σ ∧ (i 6= j ⇒ ai 6= aj), and
∀i ∈ {1, . . . , n} : wi ∈ {a1, . . . , ai}

∗. Given a word w and a symbol a, let |w|a denote
the number of occurrences of a in w. Given k ∈ N>0, we define a mapping αk from
words to languages such that for every w ∈ Σ∗, if dec(w) = (a1, w1, a2, w2, · · · , an, wn),
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then αk(w) = a1L1a2L2 · · · anLn where ∀i ∈ {1, . . . , n} : Li = {u ∈ {a1, . . . , ai}
∗ | ∀j ∈

{1, . . . , i} : (|wi|aj < k ∧ |u|aj = |wi|aj ) ∨ (|wi|aj ≥ k ∧ |u|aj ≥ k)}. We generalise αk from
words to languages in the straightforward way in order to obtain a language abstraction.
We can easily prove the following proposition.

Proposition 4.3.1 For every k ≥ 0, αk is regular and effectively representable by a finite-
state transducer.

For every given word w, the abstraction αk applies 0-k counter abstraction to a finite
number of subwords of w obtained by a decomposition of w according to the first occur-
rences of each symbol of the alphabet. Clearly, for every given alphabet Σ, the set of
possible 0-k abstractions is finite, and therefore, the number of piecewise 0-k abstractions
is also finite since they consist in concatenations of a bounded number of symbols and 0-k
abstractions.

Proposition 4.3.2 For every k ∈ N, the abstraction αk is finite-range.

In fact, below, we consider a generalisation of the above schema obtained as follows.
We allow that decompositions may be computed according to the first occurrences of only
a subset of the alphabet called decomposition symbols. Furthermore, we allow that the
abstraction does not concern some symbols called strong symbols whose all occurrences
are preserved at their original positions. Typically, strong symbols are those which are
known to have a bounded number of occurrences in all considered words. For instance, in
words corresponding to encodings of program configurations, strong symbols correspond
to markers, separators, and pointer variables which are known to have either a fixed or a
bounded number of occurrences in all configurations.

Formally, let Σ1,Σ2 ⊆ Σ be two sets of symbols such that Σ1 ∩Σ2 = ∅ where Σ1 is the
set of decomposition symbols and Σ2 is the set of strong symbols. (Notice that there may
be symbols which are neither in Σ1 nor in Σ2.) Then, given w ∈ Σ∗, we define dec(w) to
be the decomposition (a1, w1, a2, w2, · · · , an, wn) such that (1) w = a1w1a2w2 · · · anwn, (2)
∀i ∈ {1, . . . , n} : ai ∈ Σ1 ∪ Σ2 ∧ (ai ∈ Σ1 ⇒ |a1a2 · · · an|ai = 1), and (3) ∀i ∈ {1, . . . , n} :
wi ∈ ({a1, . . . , ai} \ Σ2)

∗. Then, for each given k, the abstraction αk is defined precisely
as before.

The previous proposition still holds if the number of occurrences of each strong symbol
is bounded. Let us call a p-Σ2-bounded language any set of words L such that ∀w ∈ L :
∀a ∈ Σ2. |w|a ≤ p.

Proposition 4.3.3 For every bound p ≥ 0, and for every k ∈ N, the abstraction αk is
finite-range when it is applied to p-Σ2-bounded languages.

As for the abstraction refinement issue, it is easy to see that the abstraction schema
introduced above defines a family of refinable abstractions.

Proposition 4.3.4 For every p-Σ2-bounded language L, and for every k ≥ 0, we have
αk+1(L) ⊆ αk(L). Moreover, if L is infinite, then αk+1(L) ( αk(L).

4.3.2 Closure Abstractions

We introduce hereafter another family of regular abstractions. Now, the idea is to apply
iteratively extrapolation rules which may be seen as rewriting rules that replace words of
the form uk, for some given word u and a positive integer k, by the language uku∗.
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Let u ∈ Σ∗ and let k ∈ N>0 be a strictly positive integer. A relation R ⊆ Σ∗ × Σ∗ is
an extrapolation rule wrt. the pair (u, k) if R = {(w,w′) ∈ Σ∗ × Σ∗ | w = u1u

ku2 ∧ w
′ ∈

u1u
ku∗u2}. An extrapolation system is a finite union of extrapolation rules.
Clearly, for every language L, we have L ⊆ R(L), i.e., R defines a language abstrac-

tion. Intuitively, the effect such an abstraction is, whenever there is a word in w ∈ L
which contains at least k successive occurrences of some given word u, to add all words
obtained from w by replacing uk with any word of the form up for some p ≥ k. In fact,
we are interested in abstractions which are the result of iterating extrapolation systems.
Therefore, let us define a closure abstraction as the reflexive-transitive closure R∗ of some
extrapolation system R.

It is easy to see that every extrapolation system corresponds to a regular relation (i.e.,
a relation definable by a finite-state transducer). The question is whether closure abstrac-
tions of regular languages are still regular and effectively computable. In the general case,
the answer is not known. However, we provide a reasonable condition on extrapolation
systems which guarantees the effective regularity of closure abstractions.

First of all, we can prove that if we consider a single extrapolation rule, the corre-
sponding closure abstraction if effectively computable.

Lemma 4.3.1 For every extrapolation rule R and for every regular language L, the set
R∗(L) is regular and effectively constructible.

Proof. Let A be an automaton recognising L. Let B be an automaton recognising uku∗,
and let qi (resp. qf ) be its initial (resp. final) state. Then, for every pair of states (q, q′) of
A that are related by uk, we extend A by a unique copy of B and two ε transitions q ε−→ qi
and qf

ε−→ q′ (which can then be removed by the classical algorithms). 2

Now, let R = R1 ∪ · · · ∪ Rn be an extrapolation system where each of the Ri’s is an
extrapolation rule wrt. a pair (ui, ki) ∈ Σ∗ × N>0. Our idea is to define a condition on
R such that the computation of R∗(L) can be done for every language L by computing
sequentially closures wrt. each of the extrapolation rules Ri in some ordering. Let ≺⊆
Σ∗×Σ∗ be the smallest relation such that for every u, v ∈ Σ∗, u ≺ v if (1) u is not a factor
of v (i.e., u does not appear as a subword of v), and (2) u cannot be written as w1v

pw2

for any p ∈ N and two words w1, w2 such that w1 is a suffix of v and w2 is a prefix of v.
We can prove the following lemma which says that if u ≺ v, then u can never appear in
any power of v.

Lemma 4.3.2 ∀u, v ∈ Σ∗, if u ≺ v, then ∀p ≥ 0 ∀w1, w2 ∈ Σ∗ : vp 6= w1uw2.

Proof. Immediate from the definition of ≺: The fact that u can appear in some power of
v implies that one of the two conditions defining u ≺ v is false. 2

We say that the extrapolation system R is serialisable if the reflexive closure of the
relation ≺ (i.e., ≺ ∪id) defines a partial ordering on the set {uk1

1 , . . . , u
kn
n } (i.e., ≺ is

antisymmetric and transitive on this set).

Lemma 4.3.3 Let R be a serialisable extrapolation system and let Ri1Ri2 . . . Rin be a total
ordering of the rules of R which is compatible with ≺. Then, R∗ = R∗

in ◦R
∗
in−1
· · · ◦R∗

i1
.

Proof. Follows from Lemma 4.3.2: Closing by some Rij never creates new rewriting
contexts for any of the Ri` with ` < j. 2
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From the two lemmas 4.3.1 and 4.3.3, we deduce the following fact.

Theorem 4.3.1 For every serialisable extrapolation system R and for every regular lan-
guage L, the set R∗(L) is regular and effectively constructible.

Closure abstractions (even serialisable ones) are not finite-range in general. To see this,
consider the infinite family of (finite) languages Ln = (ab)n for n ≥ 0 and the extrapolation
rule R with u = a and k = 1. Then, the images of the languages above form an infinite
family of languages defined by R∗(Ln) = (a+b)n for every n ≥ 0.

Therefore, in the verification framework described in Section 3.5, the use of a closure
abstraction α does not guarantee the termination of the computation τ∗α(Init). However,
as our experiments show (see Section 4.4), the extrapolation principle used in these ab-
stractions is powerful enough to force termination in many practical cases while preserving
the necessary accuracy of the analysis of complex properties.

Let us finally mention that the abstraction schema introduced above defines a family
of refinable abstractions.

Proposition 4.3.5 Let us have an extrapolation system R with respect to a set of pairs
{(u1, k1), ..., (un, kn)}, let k′1, . . . , k

′
n be integers such that ∀i ∈ {1, ..., n} : k′i ≥ ki, and let

S be the extrapolation system wrt. {(u1, k
′
1), . . . , (un, k

′
n)}. Then, for every language L,

we have S∗(L) ⊆ R∗(L). Moreover, if there exists j ∈ {1, ..., n} such that k′j > kj and L
contains a word with at least k successive occurrences of uj , then S∗(L) ( R∗(L).

4.4 Applications and Experimental Results

We have experimented with a prototype implementation of our techniques on several pro-
cedures manipulating linked lists. We have implemented a prototype compiler translating
programs into transducers as explained in Section 4.2. As shown in Table 4.1, we have con-
sidered procedures for reversing a list, inserting an element into a list at a given position,
deleting an element of a list at a given position, merging two lists element-by-element,
and the procedure of Bubblesort over a list. Let us note that although these procedures
primarily work with simple linear lists, temporarily they may yield several lists sharing
their tails or create circular links. Moreover, we have considered working directly with
circular lists too, namely a procedure for reversing such lists and a procedure for removing
a segment of a circular list (the motivating example of [MYRS05]).

As mentioned in Section 4.2, a store can have several encodings. Thus, to perform the
check τ∗α(Init) ∩ Bad = ∅ correctly, we require Bad to contain all possible encodings of
bad stores. In all properties that we consider below, this can easily be achieved.

4.4.1 Checking Consistency of Working with the Dynamic Memory

For all the examples, we have first checked a basic consistency property that consisted in
checking that there is no null pointer dereference, no work with undefined pointers, no
memory leak (i.e., there does not arise any undeleted and inaccessible garbage), and that
the result is a single list pointed to by the appropriate variable. The specification of such
a property for a given procedure is easy and can be derived automatically. For the list
reversion example, the set of bad states can be specified using the below extended regular
expression3 where V = x? y?:

(((e + u) Σ∗) + (Σ l8 Σ∗)) & ¬(n l8 | V | ((l V |) + (V | l V (/ V )∗ / # |)))

3We use “?” to denote zero or one occurrences and “&” to denote intersection.
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The expression says that it is bad when we try to do a null pointer dereference or work
with an undefined pointer value—this is recognised automatically in the transducers and
signalised by the first letter of the resulting configuration set to e. If the first letter becomes
u (for unknown), the program cannot be verified using the given number of markers and
we have to add some. Finally, it is bad when we reach the final line l8, and the result is
not an empty list (represented by l behind #) nor a single list pointed to by l. We do not
care about the values of x and y.

The above property, of course, holds for the correct versions of all the considered
procedures. In such a case, our tool provides the user with a safe overapproximation of
all the configurations reachable at every line. In this way, we, e.g., automatically obtain
the following invariant of the loop of the list reversion procedure:

(nl2 | y | lx |)+(nl2 | y | x | l(/)
+# |)+(nl2 | | ly | x(/)

+# |)+(nl2 | | | x(/)
+# | ly(/)+# |)

Roughly, this invariant says that the list is either empty, is pointed to from l, from x, or
partially from x and partially from l.

To try out the ability of our techniques to generate counterexamples, we have also
tried to examine a faulty version of the list reversion procedure where lines 4 and 5 were
swapped. In this case, an error is reported and we are told that from a list with one
element (i.e., from a configuration n l1 | x y | | l / # |), we can obtain a circular list (a
configuration n l8 | y | mt l x / mf | where mf and mt represent the “from” and “to”
versions of a marker m). The user can then also trace the program forwards from the
initial configuration or backwards from the erroneous one.

4.4.2 Checking More Complex Properties

Further, we have tried to verify some more complex properties of the considered programs.
Let us start, e.g., with the Bubblesort procedure. When checking just its basic consistency
property, we have completely abstracted away the data values stored in the list and made
all the conditional jumps fully nondeterministic. To check that the procedure really sorts,
we used a technique inspired by [MS01]. We considered the values of the list elements
to be abstracted to being either greater or less than or equal than their successors. The
abstracted data values were represented by two special letters (gt and lte) associated
with every list item. We supposed lte and gt to be distributed arbitrarily in the initial
configurations. We then checked that the basic consistency property holds and, moreover,
the result is a sorted list (i.e., a sequence of elements labelled—up to the last element—by
lte).4

In the case of the merge procedure, we let all elements of the first list be labelled as a
elements in the initial configuration and all elements of the other list as b elements. Then
we checked that the output list contains a regular mixture of a and b elements.

Finally, for the list reversion and insertion and circular list reversion procedures, we
did a fully precise verification of their effect. In the case of list reversion, this means that
the output contains exactly the same elements as before, but in a reversed order. For the
insertion procedure, the required property is that the output list is precisely the input list
up to one new element added into the appropriate place.

To check the above rather strong property, we have proposed a simple, yet efficient
technique. Let us explain it on the case of list reversion. In the initial configurations, we
let the first and last element be labelled by special labels bgn and end. Next, we consider

4Interestingly, the more precise verification was faster in this case, which is probably due to less non-
determinism in the program.
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as initial all the configurations that can arise from the original initial configurations by
attaching two further labels—namely fst and snd—to an arbitrary pair of successive
elements. The labels are invisible for the unmodified program—they stay attached to
their initial elements. Then, to check the desired property, it suffices that every reachable
final configuration starts with end, ends with bgn, and contains a sequence snd/fst. This
guarantees that no element can be dropped (then, there would be a way to obtain a
configuration without some of the labels), no element can be added (either end would not
be the first, bgn the last, or some snd/fst pair would get separated by another element),
and the elements must be re-arranged in the given way (otherwise the required resulting
ordering of the labels could be broken).

4.4.3 The Results of the Experiments

For each verification example, we applied one instance of the abstractions presented in
Section 4.3. For checking the basic consistency properties, we used the piecewise 0-2
counter abstraction with no decomposition symbols (Σ1 = ∅) and with strong symbols
Σ2 containing the pointer variables, the separator |, and the symbol #. Therefore, just
the parts of words containing exclusively the / symbols are abstracted. As remarked in
Section 4.2.1, / is the only symbol which can appear an unbounded number of times in
lists without data. Therefore, our abstraction is finite-range by Proposition 4.3.3. For the
more complex properties, we used closure abstractions. The extrapolation rules we applied
correspond to the loops one naturally expects to possibly arise in the considered structures
(e.g., (/a, 2), (/b, 2), (/a/b, 2) for the list merge procedure)—providing such information
seems to be easy in many practical situations.5 In all the cases, the abstractions we used
are defined by serialisable extrapolation systems. Therefore, by Theorem 4.3.1, they are
regular and effectively computable.

We tried out both verification over programs described by a single transducer as well
as over programs described by a set of transducers (one per arc of the program control
flow graph)—such transducers can easily be obtained by splitting the particular statement
transducers according to the line the control should proceed to). Column T of Table 4.1
shows the running times obtained in the latter case. They were about 1.6 to 6 times better
than in the former case. The computation times are presented for the minimum number
of markers necessary not to run into the “do not known” result. In the case of inserting
into a list, we, however, indicate that sometimes it may be advantageous to use more
than a necessary number of markers, which is especially the case of loop-free procedures
where it may completely eliminate the need for the complex operation of shifting. For
every experiment, we also indicate the number of states and transitions of the biggest
encountered automaton (or transducer).

We further made a comparison with the abstract regular model checking techniques
based on automata abstraction introduced in [BHV04]. We considered the case of programs
modelled by a single transducer for which these techniques were implemented. We observed
an equal performance on the faulty reverse example, but on the other examples, the new
techniques were about 2.9 to 88 times better (not taking into account the Bubblesort
example and checking of the correct mixture property for the list merge example where
we stopped the tool based on [BHV04] after 2000 seconds).

The verification times obtained from our prototype are very encouraging. Some of
the verification times that can be found in the literature for similar verification experi-

5Moreover, it is possible to come up with heuristics that automatically derive the necessary extrapolation
rules as mentioned at the end of the section.

85



Table 4.1: Some results of experimenting with classical and circular linked lists (obtained
at 2.4GHz Intel Pentium 4 from an early prototype tool based on Yap Prolog and the FSA
library)

Program Markers |M |max
states+transitions Tsec

Reverse, basic consistency 0 51+105 0.3

Reverse, full 0 281+369 4.2

Faulty reverse 1 61+138 0.2

Insert, basic consistency 0 81+102 0.5

Insert, basic consistency 2 165+577 0.15

Insert, full 0 755+936 10.8

Delete, basic consistency 0 55+113 0.3

Merge, basic consistency 0 209+279 2.7

Merge, correct mixture 0 1080+1415 40.4

Bubblesort, basic consistency 2 2095+2872 305

Bubblesort, full 2 2339+2887 279

Circular list reverse, basic consistency 3 655+764 5.4

Circular list reverse, full 3 2349+2822 50.6

Circ. list – removing a segment, bas. cons. 2 116+291 1.0

ments (especially the ones obtained from PALE) are lower but that is partly due to an
incomparable degree of automation (especially in PALE where a significant amount of user
intervention is needed) and partly due to the fact that our tool is just an early Prolog-
based prototype. We believe that much better times can be expected from a more solid
implementation of the tool.

4.5 Summary and Further Work

In the chapter, we have discussed the area of verifying programs manipulating dynamic
linked data structures. We have provided an overview of a number of approaches so far
proposed in this area and serving as a basis for its further development, which is currently
very live. Then, we have concentrated on our own approach to automatic verification of
programs with dynamic linked data structures built on an exploitation of abstract regular
model checking combining automata-based symbolic reachability analysis with abstraction
techniques.

Our abstract regular model checking-based approach applies to C-like sequential pro-
grams with 1-selector linked structures, for which it allows to verify automatically (safety)
properties concerning their data structures. The same techniques can also be used for
an automatic invariant generation for these programs. Notice that our approach is not
restricted to C programs but can be adapted to other languages with similar operations
on linked structures too. The techniques we define are based on simple abstractions of
regular sets of configurations which, on one hand, are abstract enough to force termination
in many practical cases and, on the other hand, are accurate enough to handle complex
properties of the considered data structures. The experimental results are quite encour-
aging and show the applicability of our approach at least to particular pointer-intensive
library routines.
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A nice point about the work presented here is that it provides a basis for various
possible generalisations. One of them is the use of abstract regular tree model checking
allowing one to deal with tree-like and even more general dynamic linked data structures
(doubly-linked lists, trees with linked leaves, etc.). We have concretised this idea in a
work published very recently in [BHRV06b] and mentioned in Chapter 5. The method
presented there belongs among the most automated and general approaches to verifying
programs manipulating dynamic linked data structures.

In the above, we have also provided two new abstraction schemas usable in the frame-
work of abstract regular model checking—the piecewise 0-k counter abstraction and the
closure abstraction. Unlike the sooner proposed representation-oriented abstractions de-
fined on sets of configurations encoded by automata, these new abstractions are defined
on particular configurations encoded as words. The techniques are defined in a general
way, which makes them not restricted to the application domain we consider here. In
fact, they can be used as efficient acceleration techniques in the generic framework of
regular model checking for the verification of various classes of infinite-state systems as
well. An interesting question for the future is a generalisation of these schemas for the
case of abstract regular tree model checking where (as we will see in the next chapter)
representation abstractions have so-far been considered only.

A certain deficiency of the closure abstraction technique as presented above is the need
to manually provide the extrapolation rules when non-pointer data fields are not abstracted
away. However, recently, we have proposed a heuristic for automatically deriving such
rules based on on-the-fly monitoring of non-looping sequences of states in the encountered
automata and on trying to divide them to a given number of equal subsequences, which can
then be used as a basis for extrapolation. This heuristic was successful in all the considered
examples with a similar time and space efficiency as presented above (the verification
times being sometimes worse but sometimes even better). A proper theoretical as well as
practical investigation of this technique is a part of our future work.

In general, in the area of verifying programs manipulating dynamic linked data struc-
tures, it is necessary to further improve the existing techniques to be able to handle more
general classes of structures (lists and trees with various additional pointers), more complex
programs manipulating them (e.g., concurrent and recursive programs with local pointer
variables), and harder to verify properties (including termination, quantitative properties
like balancedness, and so on). We hope that the techniques presented here and their exten-
sion to trees can be useful for this reason when they are further optimised and generalised.
The optimisations may include, e.g., some canonisation techniques on automata reducing
the number of ways a single store may be encoded, lifting configuration-oriented abstrac-
tions to tree regular model checking, trying to avoid the expensive determinisation step
by working with non-deterministic automata, etc. The generalisation may consist, e.g., in
using more general classes of automata—like, for instance, automata with constraints as
in Chapter 6. Another direction is then the development of techniques to handle not only
particular pointer-intensive library routines but also larger programs. Here, a crucial issue
(apart from further optimisations) is how to combine techniques for dealing with linked
data structures with methods being developed for dealing with other data types (as, e.g.,
predicate abstraction).
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Chapter 5

Regular Tree Model Checking

In this chapter, we discuss issues related to the generalisation of word regular model
checking to tree regular model checking in order to handle systems whose configurations
have a more complex than a linear (or easily linearisable) structure. The interest in
this generalisation is motivated by the fact that tree like structures are very common in
computer science and appear naturally in many modelling and verification contexts.

Trees are, for example, very common as the topology underlying various distributed
algorithms (such as mutual exclusion protocols, leader election protocols, etc.). Labelled
trees of an arbitrary height may then be straightforwardly used to represent configura-
tions of the parameterised tree-shaped networks of processes arising in such protocols:
a process is a node of a tree and the label represents its control state. Trees also arise
naturally as a representation of configurations of multithreaded recursive programs (see,
e.g., [Esp02, KvS04]) or as a representation of configurations of cryptographic protocols
(cf., for instance, [GK00, GT01]). In both of the just mentioned cases, the fact that trees
naturally correspond to terms is exploited. Further, trees may be as well exploited as a
representation structure of heaps [KS93] (here, trees may be used directly or as a backbone
over which additional pointers may be defined) or when representing structured data such
as XML documents [BKMW01].

Regular tree model checking exploits the fact that regular tree languages and finite-
state tree automata enjoy many similar properties to word regular languages and finite-
state automata. In regular tree model checking, configurations of systems have the form
of trees over a finite ranked alphabet1, possibly infinite, but regular sets of configurations
are represented using (usually bottom-up2) finite-state tree automata, and the one-step
transition relations are represented using finite-state tree transducers. Subsequently, like
in the word regular model checking case, one may try to compute the set of all reachable
configurations or the reachability relation. Again, to make the computation terminate as
often as possible, various methods are used to accelerate the computation.

Below, we first introduce the basic tree automata notions. Then, we formalise the
regular tree model checking framework and we briefly survey the various acceleration
mechanisms proposed in this area. Finally, we concentrate on abstract regular tree model
checking as a part of our contribution to the research on regular tree model checking
[BHRV05, BHRV06a, BHRV06b].

1Sometimes, unranked trees, i.e., trees with a variable arity, are also considered as, e.g., in [Sha01].
2Nondeterministic top-down tree automata have the same expressive power as bottom-up tree automata,

but unlike in the bottom-up case, their deterministic form is strictly less powerful.
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5.1 Tree Automata and Transducers

We now introduce the basic formal notions of regular tree languages and transducers.
A more detailed description can be found, e.g., in [CDG+05, Eng75].

Tree Automata and Languages

An alphabet Σ is a finite set of symbols. Σ is called ranked if there exists a rank function
# : Σ → N. For each k ∈ N, Σk ⊆ Σ is the set of all symbols with rank k. Symbols of
Σ0 are called constants. Let χ be a denumerable set of symbols called variables. TΣ[χ]
denotes the set of terms over Σ and χ. The set TΣ[∅] is denoted by TΣ, and its elements
are called ground terms. A term t from TΣ[χ] is called linear if each variable occurs at
most once in t. Terms in TΣ[χ] can be viewed as trees—leaves are labelled by constants
and variables, and each node with k sons is labelled by a symbol from Σk.

A bottom-up tree automaton over a ranked alphabet Σ is a tuple A = (Q,Σ, F, δ) where
Q is a finite set of states, F ⊆ Q is a set of final states, and δ is a set of transitions of
the following types: (i) f(q1, . . . , qn) →δ q, (ii) a →δ q, and (iii) q →δ q

′ where a ∈ Σ0,
f ∈ Σn, and q, q′, q1, . . . , qn ∈ Q.

Note: Below, we call a bottom-up tree automaton simply a tree automaton.

Let t be a ground term. A run of a tree automaton A on t is defined as follows. First,
leaves are labelled with states. If a leaf is a symbol a ∈ Σ0 and there is a rule a→δ q ∈ δ,
the leave is labelled by q. An internal node f ∈ Σk is labelled by q if there exists a rule
f(q1, q2, . . . , qk) →δ q ∈ δ and the first son of the node has the state label q1, the second
one q2, ..., and the last one qk. Rules of the type q →δ q

′ are called ε-steps and allow us
to change a state label from q to q′. If the top symbol is labelled with a state from the set
of final states F , the term t is accepted by the automaton A.

A set of ground terms accepted by a tree automaton A is called a regular tree language
and is denoted by L(A). Let A = (Q,Σ, F, δ) be a tree automaton and q ∈ Q a state, then
we define the language of the state q—L(A, q)—as the set of ground terms accepted by
the tree automaton Aq = (Q,Σ, {q}, δ). The language L≤n(A, q) is defined to be the set
{t ∈ L(A, q) | height(t) ≤ n}.

Tree Transducers

A bottom-up tree transducer is a tuple τ = (Q,Σ,Σ′, F, δ) where Q is a finite set of states,
F ⊆ Q is a set of final states, Σ is an input ranked alphabet, Σ′ is an output ranked alpha-
bet, and δ is a set of transition rules of the following types: (i) f(q1(x1), . . . , qn(xn)) →δ

q(u), u ∈ TΣ′ [{x1, . . . , xn}], (ii) q(x) →δ q
′(u), u ∈ TΣ′ [{x}], and (iii) a →δ q(u), u ∈ TΣ′

where a ∈ Σ0, f ∈ Σn, x, x1, . . . , xn ∈ χ, and q, q′, q1, . . . , qn ∈ Q.

Note: In the following, we call a bottom-up tree transducer simply a tree transducer. We
always use tree transducers with Σ = Σ′.

A run of a tree transducer τ on a ground term t is similar to a run of a tree automaton
on this term. First, rules of type (iii) are used. If a leaf is labelled by a symbol a and there
is a rule a →δ q(u) ∈ δ, the leaf is replaced by the term u and labelled by the state q. If
a node is labelled by a symbol f , there is a rule f(q1(x1), q2(x2), . . . , qn(xn))→δ q(u) ∈ δ,
the first subtree of the node has the state label q1, the second one q2, . . ., and the last
one qn, then the symbol f and all subtrees of the given node are replaced according to the
right-hand side of the rule with the variables x1, . . . , xn substituted by the corresponding
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left-hand-side subtrees. The state label q is assigned to the new tree. Rules of type (ii)
are called ε-steps. They allow us to replace a q-state-labelled tree by the right hand side
of the rule and assign the state label q′ to this new tree with the variable x in the rule
substituted by the original tree. A run of a transducer is successful if the root of a tree is
processed and is labelled by a state from F .

A tree transducer is linear if all right-hand sides of its rules are linear (no variable
occurs more than once). The class of linear bottom-up tree transducers is closed under
composition. A tree transducer is called structure-preserving (or a relabelling) if it does
not modify the structure of input trees and just changes the labels of their nodes. By abuse
of notation, we identify a transducer τ with the relation {(t, t′) ∈ TΣ × TΣ | t →

∗
δ q(t

′)
for some q ∈ F}. For a set L ⊆ TΣ and a relation % ⊆ TΣ × TΣ, we denote %(L) the set
{w ∈ TΣ | ∃w

′ ∈ L : (w′, w) ∈ %} and %−1(L) the set {w ∈ TΣ | ∃w
′ ∈ L : (w,w′) ∈ %}. If τ

is a linear tree transducer and L is a regular tree language, then the sets τ(L) and τ−1(L)
are regular and effectively constructible [Eng75, CDG+05].

Let ι ⊆ TΣ×TΣ be the identity relation and ◦ the composition of relations. We define
recursively the relations τ0 = ι, τ i+1 = τ ◦ τ i and τ∗ = ∪∞i=0τ

i. Below, we suppose id ⊆ τ
meaning that τ i ⊆ τ i+1 for all i ≥ 0.

5.2 Regular Tree Model Checking: The Idea and Approaches

As we have already mentioned, regular tree model checking is a generalisation of (word)
regular model checking to trees. A configuration of a system is encoded as a term (tree)
over a ranked alphabet and a set of such terms as a regular tree automaton. The transition
relation of a system is encoded as a linear tree transducer τ . We are given a tree automaton
Init encoding the set of initial states. For safety properties, a set of bad states (represented
by a tree automaton Bad) is given.

To illustrate the use of tree automata and transducers, let us consider a simple example—
namely, a generalisation of the simple token passing protocol from Sect. 3.2 to trees. We
suppose having a tree network of processes of an arbitrary size (for simplicity, with only
binary inner nodes). Initially, a token is situated in one of the leaf nodes. Then, it is to
be sent up to the root. We would like to check that the token does not disappear nor
duplicate.

The initial set of configurations of the simple tree token passing protocol can be
modelled by the tree automaton Init with the ranked alphabet Σ = Σ0 ∪ Σ2 where
Σ0 = {T0, N0} and Σ2 = {T,N} (to respect the formal definition of a ranked alphabet, we
distinguish leaf and non-leaf nodes with/without a token), QInit = {p0, p1}, FInit = {p1},
and the following transitions:

N0 → p0 T0 → p1

N(p0, p0)→ p0

N(p1, p0)→ p1 N(p0, p1)→ p1

The one-step transition relation may be represented by the tree transducer τ with
Σ used as the input/output alphabet, Qτ = {q0, q1, q2}, Fτ = {q2}, and the following
transitions3:

N0/N0 → q0 T0/N0 → q1
N/N(q0, q0)→ q0 T/N(q0, q0)→ q1
N/T (q1, q0)→ q2 N/T (q0, q1)→ q2
N/N(q2, q0)→ q2 N/N(q0, q2)→ q2

3We are dealing with a relabelling transducer and for a better readability, we write its transitions in
the form f/g(q1, q2) → q where f is an input symbol and g an output symbol.
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Finally, the set of bad configurations may be encoded by the tree automaton Bad
with Σ as its ranked alphabet, QBad = {r0, r1, r2}, FBad = {r0, r2}, and the following
transitions:

N0 → r0 T0 → r1
N(r0, r0)→ r0 T (r0, r0)→ r1
N(r1, r0)→ r1 N(r0, r1)→ r1
T (r1, r0)→ r2 T (r0, r1)→ r2
N or T (r1, r1)→ r2 N or T (r0 or r1, r2)→ r2
N or T (r2, r0 or r1)→ r2 N or T (r2, r2)→ r2

Similarly to the case of classical word regular model checking, the basic safety verifi-
cation problem of regular tree model checking consists in deciding whether

τ∗(L(Init)) ∩ L(Bad) = ∅. (5.1)

Of course, this problem is again in general undecidable, an iterative computation of
τ∗(L(Init)) does not necessarily terminate, and so some acceleration techniques are needed
to make it terminate as often as often possible. We briefly survey the acceleration mech-
anisms proposed for regular tree model checking below.

5.2.1 Acceleration in Regular Tree Model Checking

In [Sha01, SP02], a tree generalisation of the approach based on acceleration schemes
[PS00] is considered. In particular, a generalisation of the global acceleration of unary
transitions is used. It allows all processes in a tree to fire a certain transition within
one accelerated sweep throughout a tree from its leaves to the root (or the other way
round). The method has been implemented in the TLV[T] tool and tested on several
simple parameterised tree-shaped process networks.

In [BT02], extrapolation (widening) over tree automata is discussed. Like in [BJNT00],
the approach is based on detecting a growth pattern in a sequence of automata and on
accelerating by adding an arbitrary number of occurrences of the growth pattern. An
advantage of this method is that it allows for dealing with non-structure preserving tree
transducers. On the other hand, a disadvantage is that it was not implemented nor the
possibilities of its implementation were considered in detail (the main problem being how
to efficiently detect increments, with which one should extrapolate, in tree automata).

The works [AJMd02, ALdA05] propose a generalisation of the quotienting approach to
tree regular model checking. Structure-preserving tree transducers (also called relabelling
transducers) are only considered in this case.

In [ALdA05], quotienting based on equivalences defined via downward and upward
simulations among tree automata states as an analogy of the forward and backward sim-
ulations from the word case, which we discussed in Section 3.4.2, is proposed. Let us,
however, note that while the notion of downward simulation is quite close to the word
case, the upward simulation is different. This is due to the asymmetric nature of trees
where when going up from some node, one has to also take into account the context of
the considered node. That is why the upward simulation is defined wrt. downward sim-
ulations on all nodes that appear as siblings of the considered node. The general notion
of downward and upward simulation is then concretised using prefix and suffix copying
tree automata states again in a somewhat similar way as in the word case (while tak-
ing into account the complications related to the upward simulation). The approach was
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implemented in a prototype way and tested on several case studies from the area of param-
eterised tree-shaped process networks (the same as those we discuss later in this chapter
in relation to the experiments on abstract regular tree model checking).

Below, we describe a generalisation of the abstract regular model checking approach to
the tree case we proposed in [BHRV05, BHRV06a]. The approach allows one to deal with
structure-preserving as well as non-preserving transducers. Similarly to the word case,
the introduction of an automated abstraction with a counterexample-guided refinement
brings in a quite efficient way for fighting the state explosion problem in the number of
tree automata states.

5.3 Abstract Regular Tree Model Checking

Like in abstract word regular model checking, abstract regular tree model checking is based
on abstract fixpoint computations in some finite domain of automata. The abstract fix-
point computations always terminate and provide overapproximations of the reachability
sets. To achieve this, we define techniques that systematically map any tree automaton
M to a tree automaton M ′ from some finite domain such that M ′ recognises a superset of
the language of M . For the case that the computed overapproximation is too coarse and
a spurious counterexample is detected, we give effective principles allowing the abstrac-
tion to be refined such that the new abstract computation does not encounter the same
counterexample.

We, in particular, propose two abstractions for tree automata. Again similarly to
abstract word regular model checking, both of them are based on collapsing automata
states according to a suitable equivalence relation. The first is based on considering two
tree automata states equivalent if their languages of trees up to a certain fixed height are
equal. The second abstraction is defined by a set of regular tree predicate languages as an
analogy to the word automata predicate abstraction. However, we also show that not all
abstraction schemas from the word case can be lifted to the tree case.

We have implemented the above abstractions in a prototype tool using the Timbuk
[Gen] tree automata library. We have experimented with the tool on various parameterised
tree network protocols. The results are very encouraging and compare very favourably
with other tools. This motivated our recent work [BHRV06b] where we use a new im-
plementation of abstract regular tree model checking based on the MONA tree automata
libraries [KM01] for verifying programs manipulating complex dynamic linked data struc-
tures.

5.3.1 The Framework of Abstract Regular Tree Model Checking

The basic framework of abstract regular tree model checking can be formalised in a way
quite similar to word regular model checking (unlike other approaches to regular tree model
checking where a rather complex, new theoretical framework was needed to obtain them
as a generalisation of the appropriate word cases). We basically phrase all the needed
concepts not for classical finite automata, but for for finite tree automata.

Let Σ be a ranked alphabet and MΣ the set of all tree automata over Σ. We define
an abstraction function as a mapping α : MΣ → AΣ where AΣ ⊆ MΣ and ∀M ∈ MΣ :
L(M) ⊆ L(α(M)). An abstraction α′ is called a refinement of the abstraction α if ∀M ∈
MΣ : L(α′(M)) ⊆ L(α(M)). Given a tree transducer τ and abstraction α, we define a
mapping τα : MΣ → MΣ as ∀M ∈ MΣ : τα(M) = τ̂(α(M)) where τ̂(M) is a minimal
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automaton describing the language τ(L(M)). An abstraction α is finite range if the set
AΣ is finite.

Let Init be a tree automaton representing the set of initial configurations and Bad
be a tree automaton representing the set of bad configurations. Now, we may iteratively
compute the sequence (τ i

α(Init))i≥0. Since we suppose id ⊆ τ , it is clear that if α is
finitary, there exists k ≥ 0 such that τk+1

α (Init) = τk
α(Init). The definition of α implies

L(τk
α(Init)) ⊇ τ∗(L(Init)). This means that in a finite number of steps, we can compute

an overapproximation of the reachability set τ∗(L(Init)).

If L(τk
α(Init)) ∩ L(Bad) = ∅, then the verification problem denoted as 5.1 above has

a positive answer. Otherwise, the answer to the problem 5.1 is not necessarily negative
since during the computation of τ∗α(L(Init)), the abstraction α may introduce extra be-
haviours leading to L(Bad). Let us examine this case. Assume that τ∗α(Init)∩L(Bad) 6= ∅,
which means that there is a symbolic path:

Init, τα(Init), τ2
α(Init), · · · τn−1

α (Init), τn
α (Init) (5.2)

such that L(τn
α (Init)) ∩ L(Bad) 6= ∅. We analyse this path by computing the sets Xn =

L(τn
α (Init)) ∩ L(Bad), and for every k ≥ 0, Xk = L(τk

α(Init)) ∩ τ−1(Xk+1). Two cases
may occur: (i) either X0 = L(Init) ∩ (τ−1)n(Xn) 6= ∅, which means that the problem 5.1
has a negative answer, or (ii) there is a k ≥ 0 such that Xk = ∅, and this means that
the symbolic path 5.2 is actually a spurious counterexample due to the fact that α is too
coarse. In this last situation, we need to refine α and iterate the procedure. Therefore, our
approach is based on the definition of abstraction schemas allowing to compute families
of (automatically) refinable abstractions.

5.3.2 Abstractions over Tree Automata

Below, we discuss two possible tree automata abstraction schemas which are based on tree
automata state equivalence. First, tree automata states are split into several equivalence
classes by an equivalence relation. Then, the abstraction function collapses states from
each equivalence class into one state. Formally, a tree automata state equivalence schema
E is defined as follows: To each tree automaton M = (Q,Σ, F, δ) ∈ MΣ, an equivalence
relation ∼E

M⊆ Q×Q is assigned. Then the automata abstraction function αE corresponding
to the abstraction schema E is defined as ∀M ∈MΣ : αE(M) = M/ ∼E

M . We call E finitary
if αE is finitary (i.e., there is a finite number of equivalence classes). We refine E by making
∼E

M finer.

Abstraction Based on Tree Languages of Finite Height

We now present the possibility of defining automata state equivalence schemas based
on comparing automata states wrt. a certain bounded part of their languages. The
abstraction schema Hn is a generalisation of the schema based on languages of words up
to a certain length proposed for word automata in [BHV04] and described in Sect. 3.5.4.
The Hn schema defines two states of a tree automaton M as equivalent if their languages
up to the given height n are identical.

Formally, for a tree automaton M = (Q,Σ, F, δ), Hn defines the state equivalence as
the equivalence ∼n

M such that ∀q1, q2 ∈ Q : q1 ∼
n
M q2 ⇔ L≤n(M, q1) = L≤n(M, q2).

There is a finite number of languages of trees with a maximal height n, and so this
abstraction is finite range. Refining of the abstraction can be done by increasing the value
of n.
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The abstraction schema Hn can be implemented in a similar way as minimisation of
tree automata [CDG+05]. Just the main loop of the minimisation procedure is stopped
after n iterations.

Abstraction Based on Predicate Tree Languages

We next introduce a predicate-based abstraction schema PP , which is inspired by the
predicate-based abstraction on words from [BHV04] discussed in Sect. 3.5.3.

Let P = {P1, P2, . . . , Pn} be a set of predicates. Each predicate P ∈ P is a tree
language represented by a tree automaton. Let M = (Q,Σ, F, δ) be a tree automaton,
then two states q1, q2 ∈ Q are equivalent if their languages L(M, q1) and L(M, q2) have a
nonempty intersection with exactly the same subset of predicates from the set P.

Formally, for an automaton M = (Q,Σ, F, δ), PP defines the state equivalence as the
equivalence ∼P

M such that ∀q1, q2 ∈ Q : q1 ∼
P
M q2 ⇔ (∀P ∈ P : L(P ) ∩ L(M, q1) 6= ∅ ⇔

L(P ) ∩ L(M, q2) 6= ∅).
Clearly, since P is finite and there is only a finite number of subsets of P representing

the predicates with which a given state has a nonempty intersection, PP is finitary. This
schema can be refined by adding new predicates into the set P. The following theorem
shows that we may eliminate a spurious counterexample by extending the predicate set P
by the languages of all states of the tree automaton representing Xk+1 in the analysis of
the spurious counterexample (recall that Xk = ∅) as presented in Section 5.3.1.

Theorem 5.3.1 Let us have any two tree automata M = (QM ,Σ, FM , δM ) and X =
(QX ,Σ, FX , δX ) and a finite set of predicate automata P such that ∀qX ∈ QX : ∃P ∈ P :
L(X, qX) = L(P ). Then, if L(M) ∩ L(X) = ∅, L(αPP

(M)) ∩ L(X) = ∅ too.

Proof. The proof is a generalisation of the proof of Theorem 3.5.1 stated for word
automata in [BHV04] (cf. Section 3.5.3). We prove the theorem by contradiction. Suppose
L(αPP

(M))∩L(X) 6= ∅. Let t ∈ L(αPP
(M))∩L(X). As t is accepted by αPP

(M), M must
accept it when we allow it to perform a certain number of “jumps” between states equal
wrt. ∼P

M—after accepting a subtree of t and getting to some q ∈ QM , M is allowed to
jump to any q′ ∈ QM such that q ∼P

M q′ and go on accepting from there (with or without
further jumps).

Let i > 0 be the minimum number of jumps needed for accepting a tree from the set
L(αPP

(M)) ∩ L(X) in M , and let t′ be such a tree. When looking at the acceptance of
t′ in M (with some jumps allowed), we can identify maximum subtrees of t′ that may be
accepted without jumps—in the worst case, they are just the leaves. Let us take any of
such subtrees. Such a subtree t1 is accepted in some q1, from which M jumps to some
q2 and goes on accepting the rest of the input. Suppose that t1 is accepted in some
qX ∈ QX in X. As t1 ∈ L(M, q1), L(M, q1) ∩ L(P ) 6= ∅ for the predicate P ∈ P for which
L(P ) = L(X, qX). Moreover, as q1 ∼

P
M q2, L(M, q2) ∩ L(P ) 6= ∅ too. This implies there

exists t2 ∈ L(P ) such that t2 ∈ L(M, q2) and t2 ∈ L(X, qX). However, this means that the
tree t′′ that we obtain from t′ by replacing its subtree t1 with t2 and that clearly belongs
to L(αPP

(M))∩L(X) can be accepted in M with i− 1 jumps, which is a contradiction to
the assumption of i being the minimum number of jumps needed. 2

Similarly to the word case, the abstraction αPP
of a tree automaton M wrt. the state

equivalence based on tree predicate languages P can be implemented as labelling each state
of M by the predicates with which its language has a non-empty intersection, and then
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Figure 5.1: A problem with the forward tree predicate abstraction

collapsing states with an equal labelling. When refining PP , it is not necessary to store each
of the newly introduced predicates corresponding to the states of Xk+1 independently and
then perform the labelling independently for each of them. We may keep just Xk+1 and
then perform labelling not by just Xk+1 but by each of its states. Moreover, this labelling
may be implemented by one simultaneous run through M and Xk+1, which corresponds
to an efficient simultaneous labelling by all the predicates contained in Xk+1.

Let us add that PP has been in particular inspired by the backward predicate-based
abstraction schema BP from [BHV04], which considers words between a given automaton
state and the initial state. It is interesting that as we illustrate in Figure 5.1, it is not
possible to obtain a tree analogy with the forward predicate-based abstraction schema
FP of the word abstract regular model checking, which considers words between a given
automaton state and the final states. The tree analogy would be to label a state with a
predicate state if the languages of their contexts—i.e., trees where we substitute Σ∗ for
the language of the node being labelled/used for labelling—have a non-empty intersection.
However, in this way, we may not ensure that the abstraction of M from Figure 5.1 will
be disjoint with Bad (in Figure 5.1, the upper index of the states of M shows by which
states of Bad they are labelled).

5.3.3 Experiments with Abstract Regular Tree Model Checking

In order to be able to practically evaluate the proposed methods of abstract regular tree
model checking, we have implemented them in a prototype tool. We have based our pro-
totype tool on the Timbuk library [Gen] written in OCaml. Timbuk provided us with
the basic operations over tree automata needed in abstract regular tree model checking
(such as union, intersection, complementation, etc.). However, we had to extend Timbuk
with a support for tree transducers (and also minimisation, which was not provided by the
library). We added two implementations of tree transducers—a simpler and more efficient
for structure-preserving transducers and a more complex for general transducers. The
latter implementation exploits a decomposition of a tree transducer into three less compli-
cated ones as described in [Eng75]. This decomposition can be performed automatically
for any tree transducer.

We have tested our verification methods on several examples of protocols using a
parameterised tree-shaped network cited in the literature [KMM+01, ABH+97, AJMd02,
ALdA05] where the necessity to cover all possible values of the parameters leads to dealing
with infinite state spaces:

• Simple Token Protocol. Our running example from Sect. 5.2: A token is being
passed in a tree-shaped network from a leaf to the root. We check that the token
does not disappear nor replicate.
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• Two-Way Token Protocol. An analogy to the previous example, but we allow the
token to be passed upwards as well as downwards.

• Percolate Protocol. A tree-shaped network of processors computes the logical dis-
junction of the boolean values that appear in the leaf nodes. We check that the
computed value is always correct.

• Tree Arbiter Protocol. A tree-shaped network is used to implement mutual exclusion
among the leaf processors. A request to enter the critical section is propagated
upwards till a node is found which has a token allowing one to enter the critical
section or which knows where the token is (because it granted the token to one of
its children). A node with the token can always send the token upwards or grant it
to any of its children. We check the mutual exclusion property.

• Leader Election Protocol. One of a set of processors is to be elected a leader and a
tree-shaped network is used for this purpose. The leaves are divided into candidates
and non-candidates. The information about the existence of candidates is propa-
gated upwards. In the subsequent downward phase, a path leading from the root
to one of the candidate nodes is non-deterministically selected and thus a leader is
established. We check that exactly one leader is chosen.

All the above examples work with a tree-shaped network of a fixed structure. In order
to test the ability of our method to work with non-structure-preserving systems, we have
considered a simple broadcast protocol. In the protocol, the root sends a message to all
leaf nodes. They answer and the answers are combined when travelling upwards. An
intermediate node may decide to resend the message downwards and wait for new data.
New nodes may dynamically join the network at leaves and also leave the network in a
suitable moment. We check that there is at most one active message on each path from
the root to the leaves.

The results of our experiments are summarised in Table 5.1. We performed experiments
with both the finite-height abstraction as well as with the predicate-based abstraction.
We considered both forward as well as backward verification—i.e., starting with the set
of initial states and checking that the bad states cannot be reached or vice versa. In the
table, we always present the better result of these two approaches. For the finite-height
abstraction, we considered the initial height one (and increased it by one if necessary—
in the cases presented in Table 5.1, this was not necessary). For the predicate-based
abstraction, we considered the automaton describing the set of bad states as the only
initial predicate (or—more precisely—all the automata that can be obtained from it by
considering each of its states as the only accepting one; in the cases presented in Table
5.1, no refinement was necessary when using these initial predicates). We experimented
with the empty initial set of predicates too—this turned out to be the fastest option for
the Percolate protocol (one refinement was necessary in this case).

The verification times presented in Table 5.1 were obtained on an Intel Centrino 1.6GHz
machine with 768MB of memory. These results are very competitive compared to the other
existing approaches to regular tree model checking. Moreover, as mentioned below, we
recently implemented a new version of the abstract regular tree model checking framework
under the Mona tree automata library [KM01], which provides even much better results
though still offering a significant space for further improvements.
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Table 5.1: Some results of experimenting with abstract regular tree model checking

Protocol Hn PP

Token passing backwards: 0.08s forwards: 0.06s

Two-way token passing backwards: 1.0s forwards: 0.09s

Percolate backwards: 20.8s forwards: 2.4s

Tree arbiter backwards: 0.31s backwards: 0.34s

Leader election backwards: 2.0s forwards: 1.74s

Broadcasting backwards: 9.1s forwards: 1.0s

5.4 Summary and Further Work on Regular Tree Model
Checking

We have presented regular tree model checking as an extension of the basic framework of
regular model checking. Regular tree model checking has many possible applications as
trees (terms) are very common in various domains of computer science and engineering.
We have briefly discussed various existing approaches to regular tree model checking and
we have in detail presented our approach of abstract regular tree model checking.

The first experimental results obtained from our Timbuk/OCaml-based prototype im-
plementation of abstract regular tree model checking are very encouraging. Very recently
[BHRV06b], they lead us to an implementation of the method in a new prototype based on
the Mona tree automata library [KM01]. This implementation is, in particular, intended
for a use within verification of programs manipulating complex dynamic linked data struc-
tures (doubly-linked lists, trees, trees with additional pointers, etc.). Configurations of
these programs, which have the form of general graphs, are encoded over a tree backbone
using the so-called routing expressions to express links that cannot be coded directly in
the tree backbone. The encoding is partly similar to the one of PALE [MS01] (cf. Section
4.1.1), but unlike in PALE, the method is fully automated—no loop invariants are to be
provided by the user (moreover, we do not require the routing expressions to have a deter-
ministic target, and the meaning of next pointers to be fixed in advance). Sets of the tree
backbones as well as the routing expressions and their manipulation are encoded using
tree automata and tree transducers. This approach is a generalisation of the approach of
using classical word abstract regular model checking for verification of programs with 1-
selector dynamic data structures [BHMV05] discussed in Chapter 4. The results obtained
in [BHRV06b] compare quite favourably with other existing approaches for verification
of programs with complex dynamic linked data structures (which we briefly described in
Chapter 4). In fact, we obtain one of the most general and at the same time most auto-
mated approaches for verifying the considered kind of programs having at the same time a
reasonable performance (at least for verifying particular pointer-intensive library routines
or modules).

Let us note that the above results were achieved despite there is still a lot of space for
further improvements of the tree regular model checking techniques and their implemen-
tation used in [BHRV06b]. In particular, one can think of more specialised abstractions
for the domain of programs with dynamic linked data structures than the general-purpose
ones that we presented above and that were used in [BHRV06b]. (As mentioned in Chapter
4, using specialised abstractions for word abstract regular model checking within verifica-
tion of programs with 1-selector dynamic data structures in [BHMV05] lead to speed-ups
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up to even two orders of magnitude.) Further, we should, for instance, try to exploit the
concept of guided tree automata [BKR97] that is usually claimed as one of the main keys
to an efficient use of Mona but which has not been used in the early prototype built in
[BHRV06b]. These issues belong among the subjects of our further work in this domain.
Moreover, we also think of combining the framework with some non-regular features, e.g.,
by introducing various constraints over the tree automata to be able to track more pre-
cisely the size of various parts of the memory configurations encoded in an abstract way in
trees. This should allow us to verify also quantitative properties (like, e.g., balancedness)
and/or termination properties of the considered programs (a certain way illustrating how
such measures could be associated with trees will be discussed in Chapter 6 although in
a less general and only semi-automated framework).

Further interesting directions for future work include research on other promising ap-
plication areas of (abstract) regular tree model checking. Among them, we can mention,
for instance, verification of XML manipulations. Indeed, XML documents have a tree
structure, and various results and tools for XML handling are based on tree automata or
hedge automata (i.e., unbounded-width tree automata where one works with regular sets of
predecessor states of a given automaton state) [BKMW01]. Furthermore, we can consider
an application of the described framework for programs with cryptographic protocols along
the lines of [Mon03]. For all these applications, one should study their suitable encoding
in tree automata and transducers and the possibility of defining application dependent
abstractions.
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Chapter 6

Tree Automata with Size
Constraints

Apart from generalising word regular model checking to tree or omega regular model
checking, one can also think of extending the framework to dealing with various classes of
(word/tree/omega) non-regular languages, for which one can find a suitable finite encod-
ing. The chosen classes of languages (and the associated encoding) should allow one to—if
possible, efficiently—implement some form of transduction, to use the needed language
operations and tests (depending on the exact setting, one may need union, intersection,
complement, emptiness checking, and/or inclusion checking), and to accelerate the com-
putation. Finding a super-class of regular languages that meets such criteria is, however,
not easy even though sometimes, some of the requirements may be relaxed: For exam-
ple, instead of having general transducers, special purpose algorithms for implementing
various types of transitions of the considered systems over the chosen (automata) repre-
sentation may be provided. Some of the language operations and tests may sometimes be
avoided—e.g., we may avoid inclusion testing when we strengthen the fixpoint tests (for
termination of the reachability analysis) via checking identity on the chosen representa-
tion of languages. Acceleration may be provided in a form specialised to a certain class of
systems, or it can be avoided when we consider only loop free systems or when we split
loops by manually provided loop invariants.

Despite the above mentioned difficulties, a number of symbolic verification approaches
based on dealing with non-regular languages have been proposed. Below, we first briefly
discuss some of the most interesting among them. Then, we illustrate in detail what it
means to go beyond dealing with regular state spaces on our work [HIV06] in which we
introduce a class of tree automata with size constraints and their application to verification
of programs manipulating dynamic balanced tree structures.

6.1 Works Trying To Go Beyond Regular Model Checking

CQDDs. Queue-content decision diagrams (QDDs) have been proposed in [BP96] as
a symbolic representation of the queue contents of systems communicating via non-lossy
unbounded FIFO queues (channels). QDDs are common finite-state automata accepting
words that are a concatenation of the contents of the queues used in a given system (their
alphabets are considered disjoint). In [BP96], a special-purpose algorithm over QDDs is
proposed for computing the exact effect of repeating any number of times a certain kind
of loops (preserving regularity) in the systems communicating via queues. This algorithm
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can be used to accelerate the computation of reachable states in this class of systems as
follows: The user (or some heuristic) chooses some loops of the given system that are used
as a basis of the so-called “meta-transitions” which are added to the system and whose
task is to atomically produce the effect of firing the appropriate loops any number of times.
Then, all the transitions are repeatedly fired (using the proposed algorithm to compute the
effect of firing meta-transitions) till a fixpoint is reached. Alternatively, general-purpose
regular model checking can of course be used too.

In [BH99], constrained queue-content decision diagrams (CQDDs) have been proposed
to capture non-regularities in sets of reachable queue contents. A CQDD is based on re-
stricted finite-state automata extended with linear (Presburger) constraints1 on the number
of occurrences of transitions of the automata appearing in accepting runs. The restriction
among others excludes nested loops in the automata underlying CQDDs—these automata
are deterministic and accept words of the form u1v

∗
1u2v

∗
2 ...umv

∗
mum+1 where all the uis

and vis are words over a given alphabet Σ such that only u1 and um+1 may be empty.
CQDDs enjoy very nice automata-theoretic properties (closure wrt. union, intersection,
concatenation, decidability of emptiness, membership, inclusion, etc.). CQDDs allow one
to exactly characterise the effect of iterating any loop in a system communicating via
queues. For this purpose, a special-purpose algorithm is proposed in [BH99] that can
be used in a meta-transition-based reachability analysis of systems communicating via
queues.

Z-input 1-Counter Machines. Model checking linear-time temporal logic over push-
down systems2 is known to be polynomial for a fixed formula [BEM97, FWW97]. For
encoding the set of configurations reachable by a push-down system, which is guaranteed
to be regular, one can use a symbolic representation based on a finite-state automaton
with multiple initial states. Then, the current control state of the push-down system
corresponds to an initial state of the finite-state automaton, and the current contents of
the stack is a word that must be accepted from this state. The automaton encoding all
reachable configurations may be obtained by the so-called saturation, i.e., by adding new
transitions (and sometimes also states) to the finite-state automaton encoding the initial
set of configurations. For instance, when computing Pre∗ of some set, if there is a rule
〈p, γ〉 → 〈p′, w〉 in the push-down system being model checked (for γ ∈ Γ, w ∈ Γ∗ where Γ
is the stack alphabet) and if p′

w
→∗ q in the finite-state automaton A encoding the so-far

computed reachability set of the push-down system, we add a transition p
γ
→ q to A.

In [BHM03], the above approach is generalised to dealing with recursive procedures
having one integer parameter. For encoding sets of reachable configurations of such sys-
tems, the so-called Z-input 1-Counter Machines are used. The input of such machines is
a sequence X1(k1)X2(k2)...Xn(kn) where Xi are symbols from some finite alphabet and
ki ∈ Z for i ∈ {1, ..., n}. The machines can increment and decrement their counter and
branch according to Presburger tests on the counter or according the symbol Xi read and
a comparison of the associated integer parameter ki with a constant or the value of the
counter. On top of such machines, a reachability procedure based on saturation (together
with some modifications of the involved Presburger formulae) is proposed. This way all
configurations reachable from a set encoded by a Z-input 1-counter machine or all con-
figurations backward reachable from a regular set can be obtained. Moreover, a method

1Presburger arithmetics [Pre29] is a first-order formal arithmetics with addition and comparison on
variables ranging over integers. Deciding of formulae of the Presburger arithmetics is 2EXPSPACE-
complete in the size of the formulae.

2Note that push-down systems unlike push-down automata do not have an input.
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is proposed for model checking a special logic allowing one to test reachability of certain
specific configurations. These configurations are specified in a form divided into a fixed
number of regular patterns with a Presburger constraint on the integer parameters that
appear between these patterns. For this purpose, another interesting class of automata is
used—namely, the so-called push-down counter automata with a finite number of reversal
bounded counters (i.e., counters whose manipulation can switch between incrementing and
decrementing a bounded number of times only) [Iba78].

Reversal Bounded Counter Automata. The above mentioned automata with a finite
number of reversal bounded counters belong—due to having decidable important proper-
ties like language emptiness or containment—among the most general, currently known
classes of automata suitable for symbolic automata-based verification. In works including
[Iba78, ISD+02], various kinds of such automata are studied. They differ in being one-way
or two-way (i.e., allowing the head on the input tape move only ahead or also change
the direction), in being deterministic or non-deterministic, in having an additional unre-
stricted counter or a push-down stack, in having different kinds of tests on the counters
attached to their transitions (up to linear-relation tests with parameterised constants),
etc. The decidability results on these automata are often obtained via using decidability
of Presburger arithmetics.

Reversal bounded counter automata may be directly used for modelling systems to be
analysed which allows one to exploit the decidability results on safety and reachability
on these automata (that build on representing the reachability set of the automata using
Presburger arithmetics). Apart from this, reversal bounded counter automata may be
used to represent reachability sets of various other models.

In the previous subsection, a push-down reversal bounded counter automaton (obtained
via a special-purpose construction applied on a Z-input 1-counter machine encoding all
reachable configurations of a system of recursive procedures with one integer parameter)
is used to describe the subset of the reachable configurations satisfying a certain formula.
In [Iba00, IDP03], special-purpose constructions are used to derive reachability relations
of systems consisting of two synchronous (or loosely synchronous—i.e., synchronous up
to a bounded difference) discrete timed automata connected via a communication queue
(with some possible extensions). The relations are obtained in the form of two-tape push-
down reversal bounded counter automata. Further, in [DBIK04], another special purpose
construction is proposed for deriving reachability sets of a class of discrete timed sys-
tems modelled by the so-called past push-down timed automata whose transition enabling
conditions can refer in a certain way to past values of the control-part of these automata.

Automata-based Verification of Networks of Recursive Processes. Specialised
counter tree automata as well as various kinds of tree automata with constraints have
also been used in the context of analysing concurrent networks of processes with dynamic
instantiation and recursion.

For example, in [BT03], process networks are modelled using process rewrite systems
(PRS) [May00a]. PRS allows for dynamic creation of processes and their concurrent
execution via having features of multiset rewriting, and it also allows for sequential exe-
cution with recursion via having features of prefix rewriting.3 In [BT03], various results

3The syntax of a PRS process term t is defined as t ::= 0 | X | t.t | t‖t where 0 is the idle process, X
is a process constant, and . and ‖ are the sequential and parallel composition operators, respectively. The
idle process 0 is a neutral element for both . and ‖, . is associative, and ‖ is associative and commutative.
A PRS is given by a set of rewrite rules t → t′ for terms t, t′. If there is a rewrite rule t → t′, one can
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on analysing PRS are given, most of them based on using regular tree languages (encod-
ing sometimes not reachability sets but sets of representatives of equivalence classes of
the reachability sets). However, a special purpose construction based on a class of the
so-called 0-test counter tree automata is also proposed for computing the set of represen-
tatives of equivalence classes of the backwards reachability set for a subclass of PRS called
PAD (with no parallel composition on the left-hand side of rules). The 0-test counter
tree automata can increment their counters by an integer constant and test them to be
all zero. They are effectively closed under intersection with a regular tree language, and
their emptiness is decidable.

Next, in [BT05], a generic procedure for computing reachability sets of PRS is provided.
It is parameterised by procedures for analysing prefix and multiset rewrite systems and
represents reachability sets using a class of commutative hedge automata. Commutative
hedge automata accept sets of trees of an unbounded width. They generalise classical
bottom-up tree automata by having rules f(L) → q where L is a regular language on
states of the automaton that can appear on the left-hand side of the rule (these rules allow
one to cope with associativity), and rules of the form f(ϕ) → q where ϕ is a Presburger
formula on the number of occurrences of particular states of the automaton in the left-
hand side of the rule (these rules allow one to cope with associativity and commutativity).4

Commutative hedge automata are effectively closed under Boolean operations, and the
emptiness problem is decidable for them. In [BT05], a saturation procedure over these
automata (using subprocedures for analysing prefix and multiset rewriting) is proposed.

Furthermore, in [BMOT05], the so-called constrained dynamic push-down networks
(CDPNs) are proposed as a new model for analysing multithreaded recursive programs.
A CDPN can be seen as a collection of identical sequential processes that run in parallel,
can create new processes (which become their children), perform pushdown operations,
and observe in a certain way the behaviour of their children—a father process can check
whether the states of his children (ordered according to their age) belong to a certain
(restricted) regular language. The work uses a saturation procedure over hedge automata
(unbounded-width tree automata) to compute the backwards reachability set starting with
a regular set of target configurations. However, the work also shows that the forwards
reachability set is non-regular and proposes a method for characterising it using a context-
free grammar. A similar approach is then considered in [BESS05] for bounded reachability
analysis of asynchronous dynamic pushdown networks communicating via shared memory.

AC-Tree Automata. Associativity and commutativity, which complicate automata-
based analyses of networks of processes represented by PRS, show up in other areas too.
One of the quite well-known among them is the area of verifying cryptographic protocols.
Configurations of such protocols may often be viewed as terms and sets of such terms as
tree languages. To cope with associativity and commutativity, one can use regular tree
approximations as, e.g., in [GK00] linked with the Timbuk tool [Gen]. Another approach

rewrite t to t′, t.t′′ to t′.t′′, and t‖t′′ to t′‖t′′ where t, t′, t′′ are PRS terms. A number of various different
approaches to analysing PRS and their different subclasses have been published in the literature—see, e.g.,
works of R. Mayr, A. Bouajjani, J. Esparza, T. Touili, A. Kučera, P. Jančar, J. Srba, P. Schnoebelen,
and others. The mentioned neutrality, associativity, and commutativity involved in PRS induce certain
equivalences on sets of PRS terms, which complicates symbolic, automata-based analyses of PRS and may
lead to a need of dealing with non-regular languages.

4Similar automata appear (in a combination with a use of a monadic-second order logic) in the reach-
ability analysis for a certain higher-order extension of PRS (allowing one to cope with nested stacks, i.e.,
stacks of stacks, etc.) considered in [Col03]. Even more powerful automata appear, e.g., in [SSM03, Lug05]
in the context of XML querying.
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has been proposed in a series of works related to the ACTAS tool [OT05]. ACTAS is based
on dealing with the so-called AC-tree automata being a special case of equational tree
automata which are a combination of equation systems over the terms being accepted and
tree automata (allowing the kind of transitions described in Section 5.1 and also transitions
of the form f(q1, ..., qn)→ f(q′1, ..., q

′
n)) [Ohs01]. AC-tree automata enjoy nice automata-

theoretic properties: They are effectively closed under union and intersection, and the
membership and emptiness problems are decidable for them. Moreover, a subclass of the
so-called regular AC-tree automata (without the special type of rules mentioned above)
is effectively closed under negation, and containment is decidable over it too. ACTAS
uses AC-tree automata to represent sets of configurations reachable in a system (e.g., a
cryptographic protocol) described by a term rewriting system. To make the computation
of the reachable configurations finish, ACTAS uses several under- and over-approximation
techniques (limiting the number of rewrite steps, limiting the depth and width of searching
when checking intersection of languages, which is needed when dealing with rewrite rules
of the form f(x, x)→ x to check overlapping on the left-hand side, etc.).

Restricted Deterministic Push-Down Automata. In [FP01], an approach that is
perhaps the closest in spirit to general-purpose regular model checking is proposed. It is
based on a novel subclass of the class of languages of deterministic push-down automata.
The class of full deterministic push-down languages itself is problematic for a use in sym-
bolic model checking as it is not closed wrt. projection needed for transductions and there
is no known efficient algorithm for checking language equivalence for it.

The new class of languages proposed in [FP01] is based on push-down automata decom-
posed into a 1-state deterministic push-down stack manipulator and a finite-state control
that synchronise by reading the same input symbols and, moreover, the finite-state part
reads the top stack symbols being manipulated too. For this class, a semi-algorithm for
projection is proposed in [FP01], the equivalence problem for this class turns out to be
efficiently decidable, and the class also retains the original positive properties of deter-
ministic push-down languages. Moreover, if the synchronisation between the push-down
manipulator and the finite-state control is solely via the input symbols, and the stack
manipulator used for specifying the initial set of configurations is preserved by the system
being verified (which can be checked using the sooner mentioned semi-algorithm for pro-
jection), transductions may be done only on the finite-state control part. Further, even
acceleration may then be done only on the finite-state part allowing one to use the classical
acceleration methods for regular model checking.

In [FP01], the use of the method is illustrated mainly on verifying an abstract version of
the Peterson mutual exclusion protocol that cannot be handled via regular model checking.

6.2 Tree Automata with Size Constraints

We now illustrate in more detail an application of more than regular languages (and the
associated automata) for symbolic verification on the use of the so-called tree automata
with size constraints (TASC). In particular, TASC have been proposed in [HIV05, HIV06]
for verification of programs manipulating balanced tree structures.

Balanced tree-like search data structures are very often applied to implement in an
efficient way lookup tables, associative arrays, sets, or similar higher-level structures,
especially when they are used in critical applications like real-time systems, kernels of
operating systems, etc. Therefore, there arose a number of such search tree structures like
AVL trees, red-black trees, splay trees, and so on [CLR90].
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When one intends to use tree automata for symbolically representing sets of con-
figurations reachable by programs manipulating balanced tree structures, one faces two
problems. First, as we have already discussed in Chapter 4, the programs can temporarily
break the tree shape of the structures being manipulated. This can be solved, e.g., by
using routing expressions over a tree backbone to express the links that are not tree-like
as in [MS01, BHRV06b] (and as also mentioned in Chapters 4 and 5). In the following,
however, we adopt a simpler approach by observing that many algorithms handling bal-
anced tree structures [CLR90] use tree rotations (plus the low-level addition/removal of
a node to/from a tree) as the only operations that effectively change the structure of the
input tree. We consider here such operations as atomic—we suppose their implementation
to be checked independently using some of the techniques for dealing with general pointer
structures mentioned in Chapter 4. Nevertheless, a generalisation of our framework to
handle all the “pointer surgery” in a uniform way is an interesting subject for further
research.

A second problem with the use of tree automata in the given area is the fact that
classical tree automata as defined in Chapter 5 represent regular sets of trees. However,
when one needs to reason in terms of balanced trees, as in the case of AVL and red-black
tree algorithms, one has to reason about non-regular sets of trees. It is exactly this problem
for coping with which we introduce our tree automata with size constraints.

TASC are tree automata whose actions are triggered by arithmetic constraints involv-
ing the sizes of the subtrees at the current node. The size of a tree is a numerical function
defined inductively on the tree structure as, for instance, the height, the maximum number
of black nodes on all paths, etc. The main advantage of using TASC in symbolic program
verification is that they recognise non-regular sets of tree languages such as AVL trees, red-
black trees, and in general, specifications involving arithmetic reasoning about the lengths
(depths) of various (possibly all) paths in the tree. We show that the class of TASC is
effectively closed under the operations of union, intersection, and complement. Also, the
emptiness problem is decidable for TASC. Moreover, the semantics of programs perform-
ing tree updates (node recolouring, rotations, pointer navigation, and appending/removal
of nodes) can be effectively represented as changes on the structure of TASC.

In our verification approach based on TASC, the user has to provide the precondition
and postcondition of the (sequential) imperative program being verified as well as loop
invariants for all loops present in the program. As the loop invariants are provided, we can
cut the program into loop-free fragments that can be handled separately. The verification
problem then consists in checking validity of Hoare triples of the form {P}C{Q} where
P and Q are TASC-encoded sets of configurations corresponding to the precondition or
postcondition of the program or to some loop invariant, and C is a loop-free fragment
of the program to be verified. Next, we reduce this verification problem to the TASC
language emptiness problem.

We validate our approach on an example of the insertion algorithm for red-black trees
for which we verify that for a balanced red-black tree input, the output of the insertion
algorithm is also a balanced red-black tree, i.e., (among others) the number of black nodes
is the same on each path.

Related Work Before proceeding further on, let us add a few, more specific comments
on the related work in addition to Section 6.1.

Verification of red-black (and other kinds of balanced) trees has, of course, been con-
sidered in several works. Out of them, the closest to what we present here is probably the
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approach of PALE [MS01] (which we briefly characterised already in Section 4.1.1). PALE
uses tree automata (although the classical ones only), and it also resembles our work by
working with preconditions, postconditions, and loop invariants, and further by reducing
the validity problem for Hoare triples to the language emptiness problem. However, PALE
as well as most other approaches do not handle the balancedness problem.

In [Par05], preservation of balancedness (together with other safety properties) has
been verified for AVL trees using TVLA [SRW02] (which we briefly characterised in Section
4.1.2). The author used special, manually provided instrumentation predicates to track
the difference between lengths of branches during rebalancing of AVL trees. This difference
can only be between −2 and 2, which can be tracked by five special predicates (that are
updated by special, manually provided predicate transformers). In [BCE+05], verification
of some properties of inserting into red-black trees (including balancedness) is reported.
The work uses graph rewriting systems for describing the insertion procedure—the model is
manually constructed. Then, an overapproximation by Petri graphs [BCK01] (cf. Section
4.1.5) is used for verifying the fact that two red nodes never appear in succession. Further,
graph type systems are used to check the balancedness. Not all desirable safety properties
are covered this way, and both of the steps require a significant user involvement.

Next, let us note that our definition of TASC is the result of searching for a class of
counter tree automata that would combine nice closure properties (union, intersection,
complementation) with decidability of the emptiness problem. Many automata in the
literature concentrate on in-breadth counting of nodes (as, e.g., [DL02, SSM03, SSMH04,
Lug05]). Our work gives a possibility of in-depth counting, which is needed in order to
express balancing of recursive tree structures.

It is also worth noticing that various computation models similar to TASC mentioned
in the literature, such as alternating multi-tape and counter automata5, have undecidable
emptiness problems in the presence of two or more 1-letter input tapes, or, equivalently,
in the presence of two non-increasing counters [Pet95]6 (reading from a 1-letter input tape
can be considered as decreasing of a counter encoded in unary). However, restricting the
number of counters is problematic for obtaining the closure of automata under intersection
as the intersection typically leads to a machine with two counters. The solution we adopt
is to let the actions on the counters depend exclusively on the input tree alphabet, this is,
we deduce actions to be done on the counters solely from the input. Then, the intersection
does not require two counters as both the counters of the original machines change in the
same way on the same input. This solution can be seen as a generalisation of the so-called
visibly pushdown languages [AM04] to trees for singleton stack alphabets. The general
case with more than one stack symbol is a subject of future work.

6.2.1 A TASC-based Verification Methodology and a Running Example

In this section, we introduce our verification methodology for programs using balanced
trees. In practice, several data structures based on balanced trees are commonly used,
e.g., AVL trees. Here, we will use red-black trees as our running example. Red-black trees

5Alternating automata generalise the concept of non-deterministic automata by allowing existential
and universal transitions. This means that sometimes the rest of the input is required to be accepted
from at least one of the target states, and sometimes it must be accepted from all of the target states.
The computation of such a machine may often be conveniently viewed as a tree. Adding alternation to
finite-state automata does not increase their expressive power, which is, however, not the case for other
types of automata.

6This result improves on the early work on alternating multi-tape automata recognising 1-letter lan-
guages in [Gei91].
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Figure 6.1: (a) A red-black tree—nodes 10, 15, 19 are red, (b) the left and right tree
rotation

are binary search trees whose nodes are coloured by red or black. They are approximately
balanced by constraining the way nodes can be coloured. The constraints insure that
no maximal path can be more than twice longer than any other path. Formally, a node
contains an element of an ordered data domain, a colour, a left and right pointer, and a
pointer to its parent. A red-black tree is a binary search tree that satisfies the following
properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf is black.

4. If a node is red, both its children are black.

5. Each path from the root to a leaf contains the same number of black nodes.

An example of a red-black tree is given in Figure 6.1 (a). The main operations on
balanced trees are searching, insertion, and deletion. When implementing the last two
operations, one has to make sure that the trees remain balanced. This is usually done
using tree rotations—cf. Figure 6.1 (b), which can change the number of black nodes on
a given path.

Because of the last condition on red-black trees mentioned above (i.e., having the same
number of black nodes in each path), it is obvious that the set of red-black trees is not
regular, i.e., not recognisable by standard tree automata [CDG+05]. Therefore, we have to
introduce a tree automata model able to describe sets of (heap) configurations containing
balanced trees. This model has to be powerful enough to describe these trees while still
having properties allowing automatic verification (i.e., decidability of inclusion, closure
under some operations, etc.).

Here, we define such a class of extended tree automata—namely, tree automata with
size constraints (TASC). We suppose the data content of the nodes to be abstracted
away—we do not verify sortedness. Basic program blocks (i.e., individual program state-
ments or groups of statements that we view as atomic like, e.g., rotations) define effective
transformations on TASC.

We assume the user to specify the precondition and postcondition of the program to
be verified. Further, we suppose the user to supply an invariant for each loop. The pre-
conditions and postconditions as well as loop invariants are specified by TASC. Then, the
verification is performed by automatically checking correctness of each triple (precondi-
tion, program block, postcondition) where the precondition is the program precondition or
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RB-Insert(T,x):

Tree-Insert(T,x); % Inserts a new leaf node x

x->colour = red;

while (x != root && x->parent->colour == red) {

if (x->parent == x->parent->parent->left) {

if (x->parent->parent->right->colour == red) {

x->parent->colour = black; % Case 1

x->parent->parent->right->colour = black;

x->parent->parent->colour = red;

x = x->parent->parent;

}

else {

if (x == x->parent->right) { % Case 2

x = x->parent;

LeftRotate(T,x)

}

x->parent->colour = black; % Case 3

x->parent->parent->colour = red;

RightRotate(T,x->parent->parent);

}

}

else .... % the same as above with right and left exchanged

}

root->colour = black;

Figure 6.2: A procedure for inserting into red-black trees

a loop invariant, the postcondition is the program postcondition or a loop invariant, and
the program block is a loop free fragment of the code between the precondition and post-
condition. This is done by computing the image of the precondition after an application of
the code of the program block and by checking that the image implies the postcondition.
This check is done using language inclusion for TASC.

In Fig. 6.2, we give the pseudo-code of the inserting operation for red-black trees
[CLR90]. For this program, we want to show that after an insertion of a node, a red-black
tree remains a red-black tree. In our work, we restrict ourselves to calculating the effects
of program blocks which preserve the tree structure of the heap. This is not the case in
general since pointer operations can temporarily break the tree structure, e.g., in the code
for performing a rotation. The operations that we handle are the following:

1. tests on the tree structure (like x->parent == x->parent->parent->left),

2. changing data of a node (as, e.g., recolouring of a node x->colour = red),

3. left and right rotations (Figure 6.1 (b)),

4. moving a pointer up or down a tree structure (like x = x->parent->parent),

5. low-level insertion/deletion, i.e., the physical addition/removal of a node to/from
a suitable place that is then followed by the re-balancing operations.

6.2.2 The Notion of TASC

In what follows, we work with the set D of all boolean combinations of formulae of the
form x − y � c or x � c for some c ∈ Z and � ∈ {≤,=,≥}. Notice that negation can be
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eliminated from any formula of D since x− y 6≤ c ⇔ x− y ≥ c+ 1, and so on. Also, any
constraint of the form x− y ≥ c can be equivalently written as y − x ≤ −c. For a closed
formula ϕ, we write |= ϕ meaning that it is valid, i.e., equivalent to true.

The following normal form of formulae from D is needed later on in Section 6.2.3.

Lemma 6.2.1 Every formula ϕ of D can be effectively written as a disjunction of formu-
lae of the following form for some suitable indexing I = {i1, i2, . . . , iN} of the free variables
and �k ∈ {≤,=} for k ∈ {1, ..., N − 1}:

N−1
∧

k=1

xik − xik+1
�k ck ∧

∧

m∈M⊆I

xm ≤ dm ∧
∧

p∈P⊆I

xp ≥ ep

Proof. First, we transform ϕ into DNF and eliminate all appearances of negation and
≥. Second, if a disjunct of the obtained formula contains a subformula of the form c1 ≤
x−y ≤ c2 for c1 < c2 (for c1 > c2, the disjunct is not satisfiable and may be discarded), we
transform the disjunct into a disjunction of constraints x−y = c for c ∈ {c1, c1 +1, ..., c2}.
Third, in order to turn the resulting formula ϕ′ into the normal form, we process ϕ′

disjunct by disjunct using the below sketched algorithm.

Every time we use the word choose in the algorithm, we mean that one should take
the disjunction of all possible cases. To obtain the normal form, we choose an indexing
I = {i1, i2, . . . , iN} of the variables in ϕ′, which associates ϕ′ with the induced ordering

θI
∆
= xi1 ≤ xi2 ≤ . . . ≤ xiN . For any constraint of the form xi − xj � c occurring in ϕ′

where � ∈ {≤,=}, we apply one of the below four cases:

1. If θI ⇒ xi ≤ xj and c < 0, there exist xi = xik ≤ xik+1
≤ . . . ≤ xil = xj in θI . We

choose c ≤ ck, ck+1, . . . , cl−1 ≤ 0 such that
∑l−1

s=k cs = c and replace the constraint
xi − xj � c by the conjunction

∧

k≤s<l xis − xis+1
� cs in ϕ′.

2. If θI ⇒ xi ≤ xj and c ≥ 0, we eliminate xi − xj � c from ϕ′.

3. If θI ⇒ xi ≥ xj and c < 0, we replace ϕ′ by ⊥ (it is unsatisfiable).

4. Otherwise, when θI ⇒ xi ≥ xj and c ≥ 0, there exist xj = xik ≤ xik+1
≤ . . . ≤ xil =

xi in θI . We choose 0 ≤ ck, ck+1, . . . , cl−1 ≤ c such that
∑l−1

s=k cs = c and replace the
constraint xi − xj � c by the conjunction

∧

k≤s<l xis − xis+1
� cs in ϕ′.

In the resulting formula, we extend every conjunction obtained as described above also
with the constraints implied by θi and then we replace:

• any conjunction of constraints of the form x−y ≤ c′∧x−y ≤ c′′ by x−y ≤ min(c′, c′′),

• any conjunction of constraints of the form x−y = c′∧x−y = c′ by simply x−y = c′,

• any conjunction of constraints of the form x− y ≤ c′ ∧ x − y = c′′ by x − y = c′′ if
c′′ ≤ c′, and

• any conjunction containing a subformula of the form x− y � c′ ∧ x− y = c′′ by ⊥ if
c′ < c′′.

2

108



The size of the disjunction is exponential in the number of variables due to the initial
choice over all possible orderings and depends also on the constants ci due to the choices
of the first and fourth numbered item above. Note that this construction does not have
to be applied if the number of variables is less than or equal to two, which is our case as
we show later on.

As in the case of tree automata in Section 5.1, to be able to define the notion of TASC,
we start with a ranked alphabet Σ defined as a finite set of symbols together with a rank
function # : Σ → N. For f ∈ Σ, the value #(f) is said to be the arity of f . We denote
by Σn the set of all symbols of arity n from Σ.

Next, let λ denote the empty sequence. A tree t over a ranked alphabet Σ is a partial
mapping t : N∗ → Σ that satisfies the following conditions:

• dom(t) is a finite prefix-closed subset of N∗, and

• for each p ∈ dom(t), if #(t(p)) = n > 0, then {i | pi ∈ dom(t)} = {1, . . . , n}.

A subtree of t starting at a position p ∈ dom(t) is a tree t|p defined as t|p(q) = t(pq)
if pq ∈ dom(t), and undefined otherwise. Given a set of positions P ⊆ N∗, we define the
frontier of P as the set fr(P ) = {p ∈ P | ∀i ∈ N pi 6∈ P}. For a tree t, we use fr(t) as a
shortcut for fr(dom(t)). We denote T (Σ) the set of all trees over the alphabet Σ.

Definition 6.2.1 Given two trees t : N∗ → Σ and t′ : N∗ → Σ′, a function h : dom(t) →
dom(t′) is said to be a tree mapping between t and t′ if the following holds:

• h(λ) = λ, and

• for any p ∈ dom(t), if #(t(p)) = n > 0, then there exists a prefix-closed set Q ⊆ N∗

such that pQ ⊆ dom(t′) and h(pi) ∈ fr(pQ) for all 1 ≤ i ≤ n.

A size function (or measure) associates to every tree t ∈ T (Σ) an integer |t| ∈ Z. Size
functions are defined inductively on the structure of the tree. For each f ∈ Σ, if #(f) = 0,
then |f | is a constant cf , otherwise, for #(f) = n, we have:

|f(t1, . . . , tn)| =







b1|t1|+ c1 if |= δ1(|t1|, . . . , |tn|)
. . .

bn|tn|+ cn if |= δn(|t1|, . . . , |tn|)

where b1, . . . , bn ∈ {0, 1}, c1, . . . , cn ∈ Z, and δ1, . . . , δn ∈ D, all depending on f . In order
to have a consistent definition, it is required that δ1, . . . , δn define a partition of Nn, i.e.,
|= ∀x1 . . . ∀xn

∨

1≤i≤n δi ∧
∧

1≤i<j≤n¬(δi ∧ δj).
7 A sized alphabet (Σ, |.|) is a ranked

alphabet with an associated size function.

Definition 6.2.2 A tree automaton with size constraints (TASC) over a sized alpha-
bet (Σ, |.|) is a 3-tuple A = (Q,∆, F ) where Q is a finite set of states, F ⊆ Q is
a designated set of final states, and ∆ is a finite set of transition rules of the form

f(q1, . . . , qn)
ϕ(|1|, . . . , |n|)
−−−−−−−−−−→ q where f ∈ Σ, #(f) = n, and ϕ ∈ D is a formula with

n free variables. For constant symbols a ∈ Σ, #(a) = 0, the automaton has unconstrained
rules of the form a −→ q.

7For technical reasons related to the decidability of the emptiness problem for TASC, we do not allow
arbitrary linear combinations of |ti| in the definition of |f(t1, . . . , tn)|.
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A run of A over a tree t : N∗ → Σ is a mapping π : dom(t) → Q such that for each
position p ∈ dom(t) where q = π(p), we have:

• if #(t(p)) = n > 0 and qi = π(pi), 1 ≤ i ≤ n, then ∆ has a rule

t(p)(q1, . . . , qn)
ϕ(|1|, . . . , |n|)
−−−−−−−−−−→ q and |= ϕ(|t|p1|, . . . , |t|pn|),

• otherwise, if #(t(p)) = 0, then ∆ has a rule t(p) −→ q.

A run π is said to be accepting if and only if π(λ) ∈ F . As usual, the language of A
denoted as L(A) is the set of all trees over which A has an accepting run.

As an example, let us now present a TASC recognising the set of all balanced red-
black trees. Let Σ = {red, black, nil} with #(red) = #(black) = 2 and #(nil) = 0. First,
we define the size function to be the maximal number of black nodes from the root to
a leaf: |nil| = 1, |red(t1, t2)| = max(|t1|, |t2|), and |black(t1, t2)| = max(|t1|, |t2|) + 1. The
TASC recognising the set of all balanced red-black trees may now be defined as Arb =

({qb, qr},∆, {qb}) with ∆ = {nil −→ qb, black(qb/r , qb/r)
|1| = |2|
−−−−−−→ qb, red(qb, qb)

|1| = |2|
−−−−−−→

qr}. By using qx/y within the left-hand side of a transition rule, we mean the set of two
or more rules in which either qx or qy take the place of qx/y.

6.2.3 Closure and Decidability Properties of TASC

This section is devoted to the closure of the class of TASC under the operations of union,
intersection and complement. Decidability of the emptiness problem is also proved here.

Determinisation

A TASC is said to be deterministic if for every input tree, the automaton has at most
one run. For every TASC A, we can effectively construct a deterministic TASC Ad such
that L(A) = L(Ad). Concretely, let A = (Q,∆, F ), GA be the set of all guards labelling
the transitions from ∆, and Gn

A = {ϕ ∈ GA | ||FV (ϕ)|| = n} where n ∈ N and ||FV (ϕ)||
denotes the number of free variables in ϕ. Without a loss of generality, we assume that

any guard ϕ labelling a transition of A of the form f(q1, . . . , qn)
ϕ
−→ q has exactly n free

variables.8 Let us define Bn
A as the set of all conjunctions of formulae from Gn

A and their
negations. Let BA =

⋃

n∈N
Bn

A ∪ {>}. With this notation, we define Ad = (Qd,∆d, Fd)
where Qd = P(Q)× BA, Fd = {〈s, ϕ〉 ∈ Qd | s ∩ F 6= ∅}, and:

f(〈s1, ϕ1〉 . . . 〈sn, ϕn〉)
ϕ
−→ 〈s, ϕ〉 ∈ ∆d iff



















































s ⊆ {q|f(q1, . . . , qn)
ψ
−→ q ∈ ∆, qi ∈ si}

and s 6= ∅

ϕ =
∧

{ψ|f(q1, . . . , qn)
ψ
−→ q ∈ ∆,

qi ∈ si, q ∈ s} ∧
∧

{¬ψ|f(q1, . . . , qn)
ψ
−→ q ∈ ∆,

qi ∈ si, q ∈ Q \ s}

a −→ 〈s,>〉 ∈ ∆d iff s = {q |a −→ q ∈ ∆}

8We can add conjuncts of the form xi = xi for all missing variables.
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Notice that Ad has no states of the form 〈s,⊥〉 since they would necessarily be unreachable.
The following theorem proves that non-deterministic and deterministic TASC recognise
exactly the same languages.

Theorem 6.2.1 Ad is deterministic and L(Ad) = L(A).

Proof. The proof is done by induction on the structure of the accepted trees. It is rather
technical, and so we skip it here and refer an interested reader to [HIV05]. 2

Union, Intersection, and Complement

Let us have two arbitrary TASCs A1 = (Q1,∆1, F1) and A2 = (Q2,∆2, F2). We can
assume w.l.o.g. that Q1 and Q2 are disjoint. Then, A1∪A2 = (Q1∪Q2,∆1∪∆2, F1∪F2).
It is easy to check that indeed L(A1 ∪A2) = L(A1)∪L(A2). For intersection, let A1∩A2 =
(Q1 ×Q2,∆12, F1 × F2) where:

f((q′1, q
′′
1 ), . . . , (q′n, q

′′
n))

ϕ′ ∧ ϕ′′

−−−−−→ (q′, q′′) ∈ ∆12 iff f(q′1, . . . , q
′
n)

ϕ′

−→ q′ ∈ ∆1 and

f(q′′1 , . . . , q
′′
n)

ϕ′′

−−→ q′′ ∈ ∆2.

The fact that L(A1 ∩A2) = L(A1) ∩ L(A2) is again an easy check.
A TASC A = (Q,∆, F ) is said to be complete if for any tree t ∈ T (Σ), there exists

a state q ∈ Q such that t
∗
−→
A

q. An arbitrary TASC can be completed by adding a sink

state π 6∈ Q and the following rules for all f ∈ Σ, q1, . . . , qn ∈ Q where n = #(f):

f(q1, . . . , qn)
ϕ
−→ π ∈ ∆c iff ϕ =

∧

{¬ψ | f(q1, . . . , qn)
ψ
−→ q ∈ ∆}

f(q1, . . . , π, . . . qn)
>
−→ π ∈ ∆c.

Above, ∆c denotes the set ∆ to which the new transition rules have been added. The

complete TASC is Ac = (Q ∪ {π},∆c, F ). Notice that if there are no rules f(q1, . . . , qn)
ψ
−→
A

q, then there is a rule f(q1, . . . , qn)
>
−−→
Ac

q. It is trivial to check that L(Ac) = L(A).

Moreover, if A is deterministic, so is Ac.
The complement of a deterministic complete TASC A = (Q,∆, F ) is defined by A =

(Q,∆, Q \ F ). The proof that L(A) = T (Σ) \ L(A) is as in the case of classical tree
automata [CDG+05].

Emptiness

In this subsection, we give an effective method for deciding emptiness of the language of a
TASC. In fact, we address a slightly more general problem—given a TASC A = (Q,∆, F ),
we construct for each state q ∈ Q, an arithmetic formula φq(x) in one variable that
precisely characterises the sizes of the trees whose roots are labelled with q by A, i.e.,

|= φq(n) iff ∃t.|t| = n and t
∗
−→
A

q. As it will turn out, the φq formulae are expressible in

Presburger arithmetic, therefore their satisfiability is decidable [Pre29]. This entails the

111



decidability of the emptiness problem for TASC, which can be expressed as the satisfiability
of the disjunction

∨

q∈F φq.

In order to construct φq, we shall translate our TASC into an alternating pushdown
system (APDS) whose stack encodes the value of one integer counter. An APDS is a triple
S = (Q,Γ, δ, F ) where Q is the set of control locations, Γ is the stack alphabet, F is the
set of final control locations, and δ is a mapping from Q× Γ into P(P(Q × Γ∗)). Notice
that APDS do not have an input alphabet since we are interested in the behaviours they
generate, rather than the accepted languages. A run of the APDS is a tree t : N∗ → (Q×Γ∗)
satisfying the following property: for any p ∈ dom(t), if t(p) = 〈q, γw〉, then {t(pi) | 1 ≤
i ≤ #(t(p))} = {〈q1, w1w〉, . . . , 〈qn, wnw〉} where {〈q1, w1〉, . . . , 〈qn, wn〉} ∈ δ(q, γ). The
run is accepting if all control locations occurring on the frontier are final.

Next, we use the construction of [BEM97] to calculate the set pre∗q(σ) of configurations
c with a control state q that have a successor set in a given set of configurations σ, i.e.,

c = 〈q, w〉
∗
−→ C ⊆ σ. It is shown in [BEM97] that if σ is a regular language, then so is

pre∗(σ), and the alternating finite automaton recognising the latter can be constructed in
time polynomial in the size of the APDS. Hence, the Parikh images of such pre∗q(σ) sets
are semilinear sets definable by Presburger formulae. In our case, σ = {〈q, ε〉 | q ∈ F} is
a finite set where ε is the (encoding of the) empty stack. Using a unary encoding of the
counter in a stack, we obtain the needed formulae φq(x).

Given a TASC A = (Q,∆, F ) over an alphabet (Σ, |.|), let SA = (QA,Γ, δA, FA) be
the APDS where QA = (Q × Σ) ∪ Π, Γ = {−, 0, 1}, and FA = {qf} ⊂ Π. Here, Π is an
additional set of states that are needed in the construction of SA from A and that are not
of the form 〈q, f〉. We use 0 as the beginning of the stack marker, − on the top of the
stack denotes a negative value, and 1 is used for the unary encoding of the absolute value
of the counter. We shall represent an integer counter x by a stack configuration 1n0 if the
value of x is n ∈ N, and −1n0 if its value is −n. The primitive operations on x, i.e., the
increment, decrement, and zero test are encoded by the moves given in Figure 6.3.

q
x′ = x+ 1
−−−−−−−−→ q′ q

x′ = x− 1
−−−−−−−−→ q′ q

x = 0
−−−−→ q′

〈q, 1〉 ↪→ 〈q′, 11〉
〈q, 0〉 ↪→ 〈q′, 10〉
〈q,−〉 ↪→ 〈q−, ε〉

〈q−, 1〉 ↪→ 〈q′−, ε〉

〈q′−, 1〉 ↪→ 〈q′,−1〉

〈q′−, 0〉 ↪→ 〈q′, 0〉

〈q, 1〉 ↪→ 〈q′, ε〉
〈q, 0〉 ↪→ 〈q′,−10〉
〈q,−〉 ↪→ 〈q′,−1〉

〈q, 0〉 ↪→ 〈q′, 0〉

Figure 6.3: Encoding a counter by a stack

We shall encode a move of A as a series of moves of SA. As A moves bottom-up on the
tree, SA will perform a series of alternating top-down transitions simulating the move of A
in reverse. The stack (counter) of SA is intended to encode the value of the size function
|.| at the current tree node.

Suppose that A has a transition rule f(q1, . . . , qn)
ϕ
−→ q, that the current node is of the

form f(t1, . . . , tn) with |f(t1, . . . , tn)| = |tk|+ ck, and that |= δk(|t1|, . . . , |tn|) according to
the definition of |.|. The value |tk| is said to be the reference value of the transition, i.e., the
value on which |f(t1, . . . , tn)| actually depends. We shall also consider that ϕ∧ δk ∈ D has
already been converted into the normal form of Lemma 6.2.1, that is, into a disjunction
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(c)

x′ = x − sgn(em)

. . .

. . .
x = 0

x′ = x + 1

〈q, f〉xm

x = 0

. . .

x′ = x − sgn(|a|)

(b)

〈q, a〉x

x′ = x − sgn(cik
)

. . .
xik

x′ = x + 1

〈qik
, fk〉

xi
k

x′ = x − 1

〈qik−1
, fk−1〉

xi
k−1

. . .

. . .

xik−1

xik+1
x′ = x − sgn(dk+1)

x′ = x + sgn(dk−1)

〈qik+1
, fk+1〉

xi
k+1

ν1

(a)

. . .

. . .

ν2

ν3

x′ = x − 1

x′ = x + 1

〈q, f〉x

Figure 6.4: Simulation of a TASC by an APDS

of formulae of the form
∧n−1

s=1 xis − xis+1
�s ds ∧

∧

m∈M xm ≤ em ∧
∧

p∈P xp ≥ lp with

�s ∈ {≤,=} for s ∈ {1, ..., n − 1}, M,P ∈ {1, . . . , n}, and ds, em, lp ∈ Z.9

After each sequence of universal moves, SA creates n copies of its counter x, let us
name them x1, . . . , xn. The counter xi is intended to hold the value |ti| for 1 ≤ i ≤ n,
and the counter x holds the value |f(t1, . . . , tn)|. Assume that the reference value of the
transition is encoded by xik , i.e., x = xik + cik . With this notation, Figure 6.4 (a) shows
the alternating moves of SA that simulate the A-transition considered (for one disjunct of
ϕ ∧ δk). Figure 6.4 (b) shows the moves for transitions of the form a −→ q.

Filled circles in Figure 6.4 represent states from Q × Σ, whereas empty circles are
additional states from Π. The only accepting state of SA, named qf , is marked by a
double circle. We denote the configurations with control states from Q × Σ by 〈q, f〉x

where x is the current value of the counter, and the configurations with control states
from Π simply by marking the value of the counter. The notation sgn(. . .) denotes the
sign function, i.e., sgn(n) = 1 if n > 0, sgn(0) = 0, and sgn(n) = −1 if n < 0. Next,
ν1, ν2, . . . are symbolic names for the universal moves performed by SA.

When simulating the A-transition f(q1, . . . , qn)
ϕ
−→ q, SA starts with the configuration

〈q, f〉x (cf. Figure 6.4 (a)). In order to derive the reference value xik from x, SA performs
cik decrement or increment actions depending on whether the sign of cik is positive or
negative. Then, SA performs the universal move ν1 making three copies of itself. The
upper one starts in a state from Π to which two existential (non-deterministic) transitions
are attached. The first one decrements the counter an arbitrary number of times in order
to obtain some smaller value (this transition is to be used for disjuncts xik−1

− xik ≤
dk−1, only—for the disjuncts xik−1

− xik = dk−1, it is removed). The second transition

9The case bk = 0 can be treated in a similar way. We only need to guess the reference value, which can
be done by a nested increment/decrement loop of the APDS.
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then moves to a different state starting a sequence of increment/decrement operations
of length dk−1 in order to obtain the value xik−1

from xik (since xik−1
≤ xik + dk−1, or

xik−1
= xik + dk−1). A similar sequence of transitions is performed by the lower universal

branch, whereas the middle branch simply changes the control state into 〈qik , fk〉 without
modifying the counter. The symbols fk−1, fk, fk+1 are chosen arbitrarily, that is, for each
triple (g1, g2, g3) ∈ Σ3

n, SA performs three universal moves that are identical to ν1, ν2, ν3

with g1, g2, and g3 substituted for fk−1, fk, and fk+1, respectively. The construction
continues until all values xi1, xi2 , . . . , xin are obtained. Clearly, such values will satisfy the
constraint ϕ ∧ δk, and all assignments satisfying this formula can be obtained in a run of
SA by iterating the increment/decrement self-loops a sufficient number of times.10

In order to simulate moves of the form a −→ q (cf. Figure 6.4 (b)), SA simply decre-

ments/increments the counter (depending on the sign of |a|) a number of times equal to
the absolute value of |a|. The condition x = 0 ensures that SA accepts only with the empty
stack. The universal dotted branch in Figure 6.4 (c) is used to test that xm ≤ em for some
1 ≤ m ≤ n. A similar test for xp ≥ lp can be issued by replacing x′ = x+1 with x′ = x−1
on the loop. The following lemma is a concretisation of the above considerations:

Lemma 6.2.2 For each TASC A = (Q,∆, F ) over a sized alphabet (Σ, |.|) there exists an
APDS SA = (QA,Γ, δ, FA) such that:

1. for any tree t ∈ T (Σ) and any run π : dom(t) → Q of A on t, there exists an
accepting run ρ : N∗ → (QA ×N) of SA and a one-to-one tree mapping h between π
and ρ such that:

∀p ∈ dom(t). ∃q ∈ QA. ρ(h(p)) = q|t|p|, (6.1)

2. for any accepting run ρ : N∗ → (QA × N) of SA, there exists a tree t ∈ T (Σ), a
run π : dom(t) → Q of A on t, and a one-to-one tree mapping h between π and ρ
satisfying (6.1).

Moreover, SA can be effectively constructed from the description of A.

Proof. The proof is rather long and quite technical—as we gave the intuition behind the
construction before stating the lemma, we skip the exact proof here and refer an interested
reader to [HIV05]. 2

As a remark, the decidability of the emptiness problem for TASC can also be proved
via a reduction to the class of tree automata with one memory [CC05] by encoding the size
of a tree as a unary term. The inequality constraints from the guards of the TASC can
be simulated analogously by adding increment/decrement self-loops to the tree automata
with one memory.

6.2.4 Semantics of Tree Updates

As explained in Section 6.2.1, there are three types of operations that commonly appear
in procedures used for balancing binary trees after an insertion or deletion: (1) navigation
in a tree, i.e., testing or changing the position a pointer variable is pointing to in the tree,
(2) testing or changing certain data fields of the encountered tree nodes, such as the colour
of a node in a red-black tree, and (3) tree rotations. In addition, one has to consider the

10Notice that since APDS do not have input, the universal branches are not synchronised, hence the
iterations can be performed separately.
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physical insertion or deletion to/from a suitable position in the tree as an input for the
re-balancing.

It turns out that the TASC defined in Section 6.2.2 are not closed with respect to the
effect of some of the above operations, in particular the ones that change the balance of
subtrees (the difference between the size of the left and right subtree at a given position
in the tree). Therefore, we now introduce a subclass of TASC called restricted TASC
(rTASC) which we show to be closed with respect to all the needed operations on balanced
trees. Moreover, rTASC are closed with respect to intersection and union, amenable to
determinisation and minimisation, though not closed with respect to complementation.
The idea is to use rTASC to express loop invariants and preconditions and postconditions
of programs as well as to perform the necessary reachability computations. TASC are
then used in the associated language inclusion checks (where they arise via negation of
rTASC).

Restricted TASC

A restricted alphabet is a sized alphabet consisting only of nullary and binary symbols and
a size function of the form |f(t1, t2)| = max(|t1|, |t2|) + a with a ∈ Z for binary symbols.
A restricted TASC is a TASC with a restricted alphabet and with binary rules only of the

form f(q1, q2)
|1| − |2| = b
−−−−−−−−−→ q with b ∈ Z.

Notice that any conjunction of guards of an rTASC and their negations reduces either
to false, or to only one formula of the same form, namely |1| − |2| = b. Using this fact,
one can show that the intersection of two rTASC is again an rTASC, and that applying
the determinisation of Section 6.2.3 to an rTASC yields another rTASC. Moreover, the
intersection of an rTASC with a classical tree automaton is again an rTASC.11 Clearly,
rTASC are not closed under complementation as inequality guards are not allowed.

Minimisation of rTASC. The simple form of the guards allows us to have a practical
minimisation procedure based on the minimisation for classical bottom-up tree automata
[CDG+05]. If (Σ, |.|) is a restricted alphabet, let Σδ be the infinite ranked alphabet
{〈f, d〉 | f ∈ Σ, d ∈ Z} with #(〈f, d〉) = #(f). For any t ∈ T (Σ), let δ(t) ∈ T (Σδ) be the
tree defined by the following conditions:

• dom(t) = dom(δ(t)),

• for all p ∈ dom(t), if #(t(p)) = 0, we have δ(t)(p) = 〈t(p), |t(p)|〉, and

• for all p ∈ dom(t), if #(t(p)) = 2, we have δ(t)(p) = 〈t(p), |t|p1| − |t|p2|〉.

Obviously, δ is a (bijective) function from T (Σ) to T (Σδ), which we extend point-wise to
sets of trees. If A is an rTASC over the restricted alphabet (Σ, |.|), let Aδ be the bottom-up
tree automaton over Σδ defined by replacing each transition rule of A of the form:

• a −→ q by 〈a, |a|〉 −→ q, and

• f(q1, q2)
|1| − |2| = b
−−−−−−−−−→ q by 〈f, b〉(q1, q2) −→ q.

Note that we can always define Aδ over a finite subset of Σδ since the number of rules in
A is finite. Moreover, the size of A (number of states) equals the size of Aδ . Last, the
transformation of A into Aδ is always reversible.

11A bottom-up tree automaton can be seen as a TASC in which all guards are true.
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Lemma 6.2.3 Given an rTASC A over a sized alphabet (Σ, |.|), for all trees t ∈ T (Σ),
we have t ∈ L(A) if and only if δ(t) ∈ L(Aδ).

Proof. We prove that t
∗
−→
A

q iff δ(t)
∗
−−→
Aδ

q by induction on the structure of t. If t =

a ∈ Σ0, a −→
A

q if and only if δ(a) = 〈a, |a|〉 −−→
Aδ

q. Otherwise, let t = f(t1, t2)
∗
−→
A

f(q1, q2)
|1| − |2| = b
−−−−−−−−−→

A
q with ti

∗
−→
A

qi, 1 ≤ i ≤ 2. Then, |t1| − |t2| = b, and hence

δ(t) = 〈f, b〉(δ(t1), δ(t2)). By the induction hypothesis, we have δ(ti)
∗
−−→
Aδ

qi and, by the

definition of Aδ, 〈f, b〉(q1, q2) −−→
Aδ

q. The other direction is symmetrical. 2

Now, given an rTASC A, we compute Aδ, minimise it using the classical construction
from [CDG+05] obtaining Aδ

min. The minimal rTASC Amin is obtained by performing
the reverse operation on Aδ

min, i.e., moving back the integer constants from the symbols
to the guards. To convince ourselves that Amin is indeed minimal, suppose there exists a
smaller rTASC A′ recognising the same language, i.e., L(A) = L(Amin) = L(A′). Then,
δ(L(A)) = δ(L(A′)) = L(A′

δ) = L(Aδ
min). Since A′ and A′

δ have the same number of
states, we contradict the minimality of Aδ

min.

6.2.5 Representing Sets of Memory Configurations

To be able to describe how tree rotations (and the other considered operations) can be
implemented over rTASC, we first have to explain how rTASC can be used for describing
sets of memory configurations of programs manipulating balanced tree structures like red-
black trees or AVL trees. Note that the memory representation used here is much simpler
than the one from [BHRV06b] mentioned in Section 5.4. This is because we work with
tree-shaped heaps only and thus we can map heap graphs directly onto the trees accepted
by rTASC with nodes labelled by the variables pointing to them and by the data elements
stored in them. We also use the label nil to denote null successors of leaf nodes.

Formally, let us consider a finite set of pointer variables V = {x, y, . . .} and a finite
set of data values D disjoint with V, e.g., D = {red, black}. In the following, we let
Σ = P(V ∪ D ∪ {nil}) where nil indicates a null pointer value (nil 6∈ V ∪ D). The arity
function is defined as follows: #(f) = 2 if nil 6∈ f , and #(f) = 0 otherwise. For a tree
t ∈ T (Σ) and a variable x ∈ V, we say that a position p ∈ dom(t) is pointed to by x if and
only if x ∈ t(p).

For the rest of the section, let A = (Q,∆, F ) be an rTASC over Σ. We say that
A represents a set of memory configurations if and only if for each t ∈ L(A) and each
x ∈ V, there is at most one p ∈ dom(t) such that x ∈ t(p). This condition can be ensured
by the construction of A: let Q = Q × P(V) and ∆ consist only of rules of the form

f(〈q1, v1〉, 〈q2, v2〉)
ϕ
−→ 〈q, v〉 where (1) v = (f ∪ v1 ∪ v2) ∩ V and (2) f ∩ v1 = f ∩ v2 =

v1 ∩ v2 = ∅. Intuitively, a control state 〈q, v〉 “remembers” all variables encountered by
condition (1), while condition (2) ensures that no variable is encountered twice.

Modelling Tree Rotations

Let x ∈ V be a fixed variable. We shall construct an rTASC A′ = (Q′,∆′, F ′) that
describes the set of trees that are the result of the left rotation of a tree from L(A) applied
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Figure 6.5: Left rotation on an rTASC

at the node pointed to by x. The case of the right tree rotation is very similar.12 In the
description, we will be referring to Figure 6.5 illustrating the problem.

Let Rx = {(r1, r2) ∈ ∆2 | x ∈ g ∧ r1 : f(q1, q2)
ϕ3
−→ q3 ∧ r2 : g(q4, q3)

ϕ5
−→ q5} be the

set of all the pairs of automata rules that can yield a rotation and be modified because
of it. Other rules may then have to be modified to reflect the change in one of their left
hand side states, e.g., the change of q5 to q′3 in the h-rule in Figure 6.5, or to reflect the
change in the balance that may result from the rotation, i.e., a change in the difference of
the sizes of the subtrees of some node. We discuss later what changes in the balance can
appear after a rotation, and Lemma 6.2.4 proves that the set D of the possible changes
in the balance in the described trees is finite. The automaton A′ can thus be constructed
from A as follows:

1. Q′ = Q ∪ Rx ∪ (Rx ×D) ∪ (Q ×D) where we add new states for the rotated parts
and to reflect the changes in the balance.

2. ∆′ = ∆ ∪∆r ∪ β(∆ ∪∆a) where:

• ∆r corresponding to the rotated rules is the smallest set such that for all

(r1, r2) ∈ Rx where r1 : f(q1, q2)
ϕ3
−−→ q3 and r2 : g(q4, q3)

ϕ5
−−→ q5, ∆r con-

tains the rules g(q4, q1)
ϕ′

5−−→ q′5 and f(q′5, q2)
ϕ′

3−−→ q′3 where q′5 = (r1, r2) and

q′3 = (r1, r2)
dr1,r2 . Here, we use (r1, r2)

dr1,r2 as a shorthand for 〈(r1, r2), dr1,r2
〉.

The value dr1,r2
∈ Z represents the change in the balance caused by the rotation

based on r1, r2. We describe the computation of ϕ′
3, ϕ

′
5, and dr1,r2

below.

• ∆a is the set of rules that could be applied just above the position where a
rotation takes place. For each (r1, r2) ∈ Rx, we take all rules from ∆ that have
q5 within the left hand side and add them to ∆a with (r1, r2) substituted for q5.

• β (described in detail in Section 6.2.5) is the function that implements the nec-
essary changes in the guards and input/output states (adding the d-component)
of the rules due to the changes in the balance.

3. F ′ = (F ×D)∪Fr. Here, Fr captures the case where q′3 becomes accepting, i.e., the
right child of the node previously labelled by q3 becomes the root of the entire tree.

12In fact, it can be implemented by temporarily swapping the child nodes in the involved rules, doing a
left rotation, and then swapping the child nodes again.
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Suppose that ϕ3 is |t1| = |t2|+a1, and let us denote the sizes of the sub-trees read at q1
and q2 before the rotation by s1 and s2, respectively. Let the size function associated with
f be |f(t1, t2)| = max(|t1|, |t2|)+b1, and let s3 denote the size of the subtree labelled by q3
before the rotation. Also, suppose that ϕ5 is |t1| = |t2|+ a2, and let us denote the size of
the sub-tree read at q4 before the rotation as s4. Finally, let the size function associated
with g be |g(t1, t2)| = max(|t1|, |t2|) + b2, and let s5 denote the size of the subtree labelled
by q5 before the rotation. We denote s′5 and s′3 the sizes obtained at q′5 and q′3 after the
rotation.

The key observation that allows us to compute ϕ′
3, ϕ

′
5, and dr1,r2

is that due to the
chosen form of guards and sizes, we can always compute any two of the sizes s1, s2, s4
from the remaining one. Indeed,

• for a1 ≥ 0, we have s3 = s1 + b1 = s2 + a1 + b1 = s4 − a2, whereas

• for a1 < 0, we have s3 = s2 + b1 = s1 − a1 + b1 = s4 − a2.

Computing ϕ′
3, ϕ

′
5, and dr1,r2

is then just a complex exercise in case splitting. Notice
that all the cases can be distinguished statically according to the mutual relations of the
constants a1, b1, a2, and b2. In the case of ϕ′

5, we obtain the following:

1. For a1 ≥ 0, we have s4 = s1 + b1 + a2, and so ϕ′
5 relating a subtree of size s4 and s1

(cf. Figure 6.5) is |t1| = |t2|+ b1 + a2.

2. For a1 < 0, we have s4 = s1 − a1 + b1 + a2, and so ϕ′
5 is |t1| = |t2| − a1 + b1 + a2.

The guard ϕ′
3 is a bit more complex. We distinguish two cases—Φ4≥1 : s4 ≥ s1 and

Φ4<1 : s4 < s1. Now, we rewrite the conditions s4 ≥ s1 and s4 < s1 using the relation
between s4 and s1 described above for a1 ≥ 0 and a1 < 0:

1. Φ4≥1 : s4 ≥ s1 ⇐⇒ (a1 ≥ 0 ∧ b1 + a2 ≥ 0) ∨ (a1 < 0 ∧ −a1 + b1 + a2 ≥ 0). If Φ4≥1

holds, then s′5 = s4 + b2. Further, we distinguish between the following cases:

(a) For a1 ≥ 0 ∧ b1 + a2 ≥ 0, we get s′5 = s1 + b1 + a2 + b2 (as a1 ≥ 0), i.e.,
s1 = s′5 − b1 − a2 − b2. Taking into account that s1 = s2 + a1, we obtain
ϕ′

3 : |t1| = |t2|+ a1 + b1 + a2 + b2.

(b) For a1 < 0 ∧ −a1 + b1 + a2 ≥ 0, we have s′5 = s1 − a1 + b1 + a2 + b2 (as
a1 < 0), i.e., s1 = s′5 + a1 − b1 − a2 − b2. Using that s1 = s2 + a1, we obtain
ϕ′

3 : |t1| = |t2|+ b1 + a2 + b2.

2. Φ4<1 : s4 < s1 ⇐⇒ (a1 ≥ 0 ∧ b1 + a2 < 0) ∨ (a1 < 0 ∧ −a1 + b1 + a2 < 0). If Φ4<1

holds, we have s′5 = s1 + b2, and so ϕ′
3 : |t1| = |t2|+ a1 + b2.

The computation of the change in the balance dr1,r2
is similar to the above. The first

case to be considered is Φ4≥3 : s4 ≥ s3 ⇐⇒ a2 ≥ 0. Here, s5 = s4 + b2. To compute the
change in the sizes reached at q5 and q′3, which is to be compensated in the transitions
to come after q′3 instead of q5, we need to compute s′3 as a function of s4 (then, in the
difference, s4 will be eliminated). We can write the following:

s′3 =































if Φ4≥1 :
{

if s4 + b2 ≥ s2 : s4 + b2 + b1
if s4 + b2 < s2 : s2 + b1

if Φ4<1 :
{

if s1 + b2 ≥ s2 : s1 + b2 + b1
if s1 + b2 < s2 : s2 + b1
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Figure 6.6: Propagation of changes in the balance in an rTASC

Let us first consider the subcase when Φ4≥1. It has two further subcases s4 + b2 ≥ s2
and s4 + b2 < s2, which we can again rewrite by using the known relations between s4 and
s2 for a1 ≥ 0 (s2 + a1 + b1 = s4 − a2) and a1 < 0 (s2 + b1 = s4 − a2). We get:

1. s4 + b2 ≥ s2 ⇐⇒ (a1 ≥ 0 ∧ a1 + b1 + a2 + b2 ≥ 0) ∨ (a1 < 0 ∧ b1 + a2 + b2 ≥ 0).
In this case, we have s′3 = s4 + b2 + b1, and so dr1,r2

= b1.

2. s4 + b2 < s2 ⇐⇒ (a1 ≥ 0 ∧ a1 + b1 + a2 + b2 < 0) ∨ (a1 < 0 ∧ b1 + a2 + b2 < 0).
Here, s′3 = s2 + b1, and we distinguish the following subcases:

(a) For a1 ≥ 0 ∧ a1+b1+a2+b2 < 0, s′3 = s2+b1 = s4−a1−b1−a2+b1 = s4−a1−a2,
and so dr1,r2

= −a1 − a2 − b2.

(b) For a1 < 0 ∧ b1 + a2 + b2 < 0, s′3 = s2 + b1 = s4 − b1 − a2 + b1 = s4 − a2, and
so dr1,r2

= −a2 − b2.

The remaining cases of the dr1,r2
computation are similar to the above.

Propagating Changes in the Balance through rTASC

As we have already said above, tree updates such as recolouring or rotations may introduce
changes in the balance at certain points. These changes may affect the balance at all
positions above the considered node. The role of the β function is to propagate a change
d in the balance upwards in the trees recognised by the given rTASC. The way β changes

a set of rules is illustrated in Figure 6.6. For every d ∈ D, every input rule f(q1, q2)
ϕ
−→ q3

is changed to two rules f(qd
1 , q2)

ϕ′

−→ qd′
3 and f(q1, q

d
2)

ϕ′′

−−→ qd′′
3 corresponding to the cases

when the change in the balance originates from the left or the right. Since we consider
just one rotation in every tree (at a given node pointed to by the pointer variable x), the
change can never come from both sides. The new guards are ϕ′ : |t1| = |t2| + a + d and
ϕ′′ : |t1| = |t2| + a − d. Let us further analyse the changes in the balance propagated
upwards after d comes from the bottom.

Suppose the change in balance is coming from the left as in Figure 6.6 (a). We distin-
guish the cases of a ≥ 0 and a < 0. (1) For a ≥ 0, the original size at q3 is s3 = s1 + b
where s1 is the original size at q1. After the change d happens at q1, i.e., s′1 − s1 = d,
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we have the following subcases: (1.1) For a + d ≥ 0, we have s′3 = s′1 + b, i.e., d′ = d,
and so we have the same change in the size at q3 as at q1. (1.2) For a + d < 0, we have
s′3 = s2 + b = s1− a+ b, and hence d′ = −a. (2) For a < 0, s3 = s2 + b. In this case, (2.1)
for a + d ≥ 0, s′3 = s′1 + b = s1 + d+ b = s2 + a+ d + b, and so d′ = a+ d, and (2.2) for
a+ d < 0, s′3 = s2 + b, and thus d′ = 0.

Similarly, when the change is coming from the right, as in Figure 6.6 (b), we have the
following cases: (1) For a ≥ 0, the original size at q3 is s3 = s1 + b, and we have the
following subcases for the new size: (1.1) For a− d ≥ 0, s′3 = s1 + b, and so d′′ = 0. (1.2)
For a − d < 0, s′3 = s′2 + b = s2 + d + b = s1 − a+ d+ b, and thus d′′ = −a+ d. (2) For
a < 0, s3 = s2 + b. Further, (2.1) for a− d ≥ 0, s′3 = s1 + b = s2 + a+ b, i.e., d′′ = a, and
(2.2) for a− d < 0, s′3 = s′2 + b = s2 + d+ b, and hence d′′ = d.

When a change d in the size happens at a child node, at its parent, the change is either
eliminated, d′ or d′′ is 0, stays the same, d′ or d′′ equals d, becomes −|a| (note that a ≥ 0
for d′ = −a, and a < 0, for d′′ = a), or finally, becomes −|a| + d. We can now close our
construction by showing that the set D of possible changes in the sizes is finite.

Lemma 6.2.4 For an rTASC A over a set of variables V and a variable x ∈ V, the set
D of the possible changes in the balance generated by a left tree rotation at x is finite.

Proof. For D to be infinite, there would have to be a possibility to start with some initial
change (either some −|a| or some dr1,r2

), and then keep modifying it infinitely many times.
This can happen only when we use infinitely many times the last case (i.e., −|a|+ d) from
the previous paragraph. Then, we can only start with some dr1,r2

as for this case to be
applied, we need the change in the size at a child node to be positive (a ≥ 0 ∧ a− d < 0
for the right case, and a < 0 ∧ a + d ≥ 0 for the left case). Note that every time the
considered case of propagating the change in the size is applied, we have d′ < d or d′′ ≤ d
meaning that the change in the size either does not change or decreases. However, this
means that we cannot get an unbounded number of different changes because sooner or
later we reach zero and stop generating further changes. 2

Note that when we allow the use of two different constants b1f and b2f in the size function
for binary nodes, the resulting class of automata will not be closed with respect to left
or right rotations. It may happen that the changes in the balance could diverge, thus
we would need an infinite number of compensating constants to be used for the different
heights of the possible trees.

Other Operations on Sets of Trees Described by rTASC

Let us now briefly show that in addition to the tree rotations, rTASC are closed with
respect to all other operations that we commonly need when dealing with balanced binary
trees too. We have listed these operations in Section 6.2.1. We are only giving an informal
description of these operations here—their formalisation is, however, straightforward.

Testing and Changing Pointers and Data. We first consider the operation of testing
whether two pointer expressions refer to the same node of a tree. Examples of such tests
are expressions x == root or x->parent->left == x. In general, we consider any test of
the form e1==e2 where e1, e2 are of the form v->n1->n2->...nm with v ∈ V, m ∈ N, and
n1, ..., nm ∈ {left, right, parent}. Suppose we are given an rTASC A recognising a set
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S of trees and a pointer equality test c. The rTASC describing the subset S′ of S of the
trees that meet c is the intersection of A and a TASC Ac encoding c.

To clearly illustrate the construction, let us present an example of Ac for the condition
x->parent->left == x. We will have rules f → q1 and g → q2 for every f, g ∈ Σ such
that x ∈ g \ f . We recall that Σ = P(V ∪ D). Then, we have rules f(q1, q1) → q1,
g(q1, q1) → q2, f(q2, q1) → q3, f(q3, q1) → q3, and f(q1, q3) → q3 for q3 being the only
accepting state. Here, the pointer referencing pattern gets simply captured in the rule
f(q2, q1)→ q3.

Second, pointer assignments of the form v′ = v->n1-> n2->...nm can be handled by our
method, using a simple transformation of the input rTASC which removes v′ from the node
where it is in the input tree and adds it to the node referenced by v->n1->n2->...nm. Note
that we do not treat assignments of the form v->n1->n2->...nm = v′->n′1->n

′
2->...n

′
m′ , i.e.,

destructive updates. We hide these assignments by encoding the effect of the entire pro-
cedures in which they appear, i.e., rotations and physical insertion or deletion of nodes.
These operations temporarily break the tree shape of the structures being handled by
introducing pointer sharing and even cycles. We suppose the correctness of these opera-
tions to be checked independently. A generalisation of our method to be able to handle
even the internal implementation of these procedures is an interesting subject for further
research.

Testing and changing the data contents of the nodes pointed to by some pinter ex-
pression of the form v->n1->n2->...nm is an analogy of the pointer reference checking
and pointer assignments. However, by changing the data contents of some node (e.g., we
recolour some node in a red-black tree), we can change the size of the appropriate subtree.
In this case, we have to use the function β from Section 6.2.5 to reflect the change in the
balance in the guards of all the rules that can be fired above the node that changed.

Inserting New Nodes. Next, when thinking of the physical insertion of a new leaf node,
recall that we suppose the null successors of such memory nodes to be explicitly represented
by null-labelled nodes in our model. Compared to the real content of the memory, we
thus add one layer of nodes. Inserting a new leaf memory node then amounts to replacing
one of the null sons of some node by a new, non-null node with two null sons. We
abstract here the sortedness property and we just pick randomly the place to insert the new
leaf. To encode the operation, we modify the input rTASC by first non-deterministically
marking some null node with a pointer variable, i.e., we change its label from {null}
to {null, x}. Then, we replace all rules {null, x} → qx by rules {null} → qnull and

{d, x}(qnull, qnull)
|1| = |2|
−−−−−−→ qx where d models the initial data content. The addition of

the new symbol may change the size of the subtrees above qx (as, e.g., adding a black node
in a red-black tree), and so we have to use the function β from Section 6.2.5 to adjust the
guards of the influenced rules.

Deleting Nodes. Finally, the deletion of a frontier node pointed to by some pointer

variable y is modelled by removing the rules {d, y}(q, qnull)
ϕ
−→ qy. (Note that a frontier

node has at least one null son.) In the remaining rules, we simply replace all the appear-
ances of qy by all the q states that appeared in the deleted rules. Subsequently, we use
again the function β from Section 6.2.5 to handle the changes in the balance resulting
from a deletion of a node.
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6.2.6 A Case Study: The Red-Black Tree Insertion

To illustrate our methodology, we show how to prove an invariant for the main loop in the
procedure RB-Insert. (Note that all the steps are normally to be done fully automatically.)
This invariant is needed to prove the correctness of the insertion procedure given in Section
6.2.1, that is, given a valid red-black tree as an input to the procedure, the output is also
a valid red-black tree. The invariant is the conjunction of the following facts:

1. x is pointing to a non-null node in the tree.

2. If a node is red, then (i) its left son is either black or pointed to by x, and (ii) its right
son is either black or pointed to by x. This condition is needed as during the re-
balancing of the tree, a red node can temporarily become a son of another red node.

3. The root is either black, or x is pointing to the root.

4. If x is not pointing to the the root and points to a node whose father is red, then x
points to a red node.

5. Each maximal path from the root to a leaf contains the same number of black nodes.
This is the last condition from the definition of red-black trees from Section 6.2.1.

For presentation purposes, if no guard is specified on a binary rule, we assume it to
be |1| = |2|. Also, we denote singleton sets by their unique element, e.g., {red} by red,
and dx stands for {d, x}, where d ∈ {red, black, nil}. Let R = {nil −→ qb, red(qb, qb) −→

qr, black(qb/r, qb/r) −→ qb} be a set of transition rules which will be included in each of the

automata below. The loop invariant is given by the following rTASC A1.

A1 : F = {qrx, qbx, q
′

bx}, ∆ = R ∪{blackx(qb/r , qb/r) −→ qbx (1), black(qbx/rx, qb/r) −→ q′bx(2),

black(q′bx/rx, qb/r) −→ q′bx, black(qb/r, q
′

bx/rx) −→ q′bx (3), black(qb/r, q
′

bx/rx) −→ q′bx,

redx(qb, qb) −→ qrx, red(q′bx, qb) −→ q′rx, red(qb, q
′

bx) −→ q′rx,

red(qrx, qb) −→ q′rx (4), red(qb, qrx) −→ q′rx (5)}

Intuitively, qb labels black nodes and qr red nodes which do not have a node pointed
to by x below them. qbx and qrx mean the same except that they label a node which is
pointed to by x. Primed versions of qbx and qrx are used for nodes which have a subnode
pointed to by x. In the following, this intuitive meaning of states will be changed by the
program steps. We refer to the pseudo-code of Section 6.2.1.

If the loop entrance condition x!= root && x->parent->colour == red is true, we
obtain a new automaton A2. It is given by modifying A1 as follows: F = {q′bx} and the
rules (1), (2) and (3) are removed.

If the condition x->parent == x->parent->parent->left is true, we take A2, change
rule (4) to red(qrx, qb) −→ q′′rx, rule (5) to red(qb, qrx) −→ q′′rx and add a rule black(q′′rx, qb/r) −→

q′bx (6) to obtain A3. Now, q′′rx accepts the father of the node pointed by x and q′rx its
grandfather.

If the condition x->parent->parent->right->colour == red holds, we obtain the
automaton A4 that is like A3 except for rule (6) changed into black(q′′rx, qr) −→ q′bx.
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The recolouring step x->parent->colour = black changes some guards on rules and
leads to a propagation of the change through the automaton. The result is A5:

A5 : F = {q′bx},∆ = R ∪

{black(q′bx/rx, qb/r)
|1| = |2|+ 1
−−−−−−−−−→ q′bx, redx(qb, qb) −→ qrx,

black(qb/r, q
′

bx/rx)
|1|+ 1 = |2|
−−−−−−−−−→ q′bx, red(q′bx, qb)

|1| = |2|+ 1
−−−−−−−−−→ q′rx,

black(q′′rx, qr)
|1| = |2|+ 1
−−−−−−−−−→ q′bx (7), red(qb, q

′

bx)
|1|+ 1 = |2|
−−−−−−−−−→ q′rx,

black(qrx, qb) −→ q′′rx, black(qb, qrx) −→ q′′rx}

After the recolouring step x->parent->parent->right->colour = black, we get A6,
which is A5 where we change rule (7) to black(q′′rx, qb) −→ q′bx. Note that no propagation is

needed in this case.
After the recolouring step x->parent->parent->colour = red that introduces changes

on guards, and the propagation of these changes, we obtain:

A7 : F = {q′bx},∆ = R ∪
{black(q′bx/rx, qb/r) −→ q′bx, black(qb/r, q

′

bx/rx) −→ q′bx, black(qrx, qb) −→ q′′rx,

black(qb, qrx) −→ q′′rx, redx(qb, qb) −→ qrx (8), red(q′bx, qb) −→ q′rx,

red(q′′rx, qr) −→ q′bx (9), red(qb, q
′

bx) −→ q′rx}

After x = x->parent->parent, we get A8 derived from A7 by changing rule (8) to
red(qb, qb) −→ qrx and rule (9) to redx(q′′rx, qb) −→ q′bx.

This takes care of Case 1, and one can then check that L(A8) ⊆ L(A1).

For Case 2, we have to go back to automaton A3 and apply the fact that the conditional
x->parent->parent->right->colour == red is false, i.e., in other words, the condition
x->parent->parent->right->colour == black must be true. The result is:

A9 : F = {q′bx},∆ = R ∪ {black(q′bx/rx, qb/r) −→ q′bx, black(qb/r, q
′

bx/rx) −→ q′bx,

black(q′′rx, qb) −→ q′bx, redx(qb, qb) −→ qrx (11), red(q′bx, qb) −→ q′rx,

red(qb, q
′

bx) −→ q′rx, red(qb, qrx) −→ q′′rx (12), red(qrx, qb) −→ q′′rx (10)}

After the condition x == x->parent->right, A9 is changed into A10 by removing rule
(10). After x = x->parent, A10 is changed into A11 by changing rule (11) to red(qb, qb) −→

qrx and rule (12) to redx(qb, qrx) −→ q′′rx.

Now, the operation Left-Rotate(T,x) introduces new states and transitions, and we
get the TASC A12. Notice that no rebalancing is necessary.

A12 : F = {q′bx},∆ = R ∪ {black(q′bx/rx, qb/r) −→ q′bx, black(qb/r, q
′

bx/rx) −→ q′bx,

black(qrot2, qb) −→ q′bx, redx(qb, qb) −→ qrot1, red(q′bx, qb) −→ q′rx,

red(qb, q
′

bx) −→ q′rx, red(qrot1, qb) −→ qrot2}

After x->parent->colour = black and a propagation of the changes in the balance,
we obtain:

A13 : F = {q′bx},∆ = R ∪ {

black(q′bx/rx, qb/r)
|1| = |2|+ 1
−−−−−−−−−→ q′bx, redx(qb, qb) −→ qrot1,

black(qb/r, q
′

bx/rx)
|1|+ 1 = |2|
−−−−−−−−−→ q′bx, red(q′bx, qb)

|1| = |2|+ 1
−−−−−−−−−→ q′rx,

black(qrot2, qb)
|1| = |2|+ 1
−−−−−−−−−→ q′bx, red(qb, q

′

bx)
|1|+ 1 = |2|
−−−−−−−−−→ q′rx, black(qrot1, qb) −→ qrot2}
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After x->parent->parent->colour = red, we obtain:

A14 : F = {q′bx},∆ = R ∪ {
black(q′bx/rx, qb/r) −→ q′bx, redx(qb, qb) −→ qrot1,

black(qb/r, q
′

bx/rx) −→ q′bx, red(q′bx, qb) −→ q′rx,

red(qrot2, qb)
|1| = |2|+ 1
−−−−−−−−−→ q′bx, red(qb, q

′

bx) −→ q′rx, black(qrot1, qb) −→ qrot2}

Finally, after Right-Rotate(T,x->parent->parent), we get:

A15 : F = {q′bx},∆ = R ∪ { black(q′bx/rx, qb/r) −→ q′bx, black(qb/r, q
′

bx/rx) −→ q′bx

black(qb/r, qrot4) −→ q′bx, black(qrot4, qb/r) −→ q′bx, black(qrot1, qrot3) −→ qrot4,

redx(qb, qb) −→ qrot1, red(q′bx, qb) −→ q′rx, red(qb, q
′

bx) −→ q′rx,

red(qrot4, qb) −→ q′rx, red(qb, qb) −→ qrot3, red(qb, qrot4) −→ q′rx}

Then, it can be checked that L(A15) ⊆ L(A1). Case 3 of the insertion procedure is
very similar to Case 2, and so we omit it here.

6.3 Summary and Further Work

In the chapter, we have first briefly discussed multiple interesting approaches to symbolic
formal verification based on using various kinds of more-than-regular languages. Then,
we have discussed in detail a work that is our own contribution in this area obtained in a
close collaboration with our foreign partners.

In particular, our contribution consists in a proposal of a method for semi-algorithmic
verification of programs that manipulate balanced trees. The approach is based on speci-
fying program preconditions, postconditions, and invariants as sets of trees recognised by
a novel class of extended tree automata called TASC. TASC come with interesting closure
properties and a decidable emptiness problem. Moreover, the semantics of tree-updating
programs can be effectively represented as modifications on the internal structures of
TASC. The framework has been validated on a case study consisting of the node insertion
procedure for red-black trees. Precisely, we verified that given a balanced red-black tree
on the input to the insertion procedure, the output is again a balanced red-black tree.

In the future, we plan to implement the method to be able to perform more case stud-
ies. An interesting subject for further research is then extending the method to a fully
automatic one. For this, a suitable acceleration method for the reachability computation
on TASC is needed. Also, it is interesting to try to generalise the method to handle even
the internals of low-level manipulations that temporarily break the tree shape of the con-
sidered structures (e.g., by lifting the technique to work over tree automata extended with
routing expressions describing additional pointers over the tree backbone as considered in
[BHRV06b]).

Moreover, apart from the above mentioned possible future work on TASC, there is of
course a large space for proposing and experimenting with various new automata and lan-
guages (in general not limiting their application to dealing with balanced dynamic linked
data structures). There even already exist some classes of languages and automata (some
proposed relatively recently) that appear quite promising for automated symbolic veri-
fication extending the concept of regular model checking (or more specifically, abstract
regular model checking). Among such classes, we can list, e.g., visibly push-down lan-
guages [AM04], AC-tree languages [Ohs01], or languages of various kinds of automata
with restricted counters. Some of these classes have already been used for symbolic veri-
fication (as mentioned in Section 6.1), but not in a way being an extension of the generic

124



regular model checking framework. The same then applies for combining the use of these
automata with automated abstraction with counterexample-guided refinement schemas.
The use of abstraction in this context might at the same time be quite advantageous as
operations on such automata are often much more expensive than on classical finite-state
automata.
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Chapter 7

Conclusion

We have included a concrete summary and a discussion of possible future work into every
chapter of the previous text. Let us, however, briefly summarise the contents of the work
once again and let us also sum up and generalise the possible directions for future research.

7.1 Summary

We have concentrated on two approaches to applying model checking in formal verification
of infinite-state systems. Namely, we have considered the use of cut-offs and the use of
regular model checking and some of its extensions. We have payed a lot of attention to
the area of verification of programs manipulating dynamic linked data structures as one
of the areas where regular model checking can be quite successfully applied. We have
presented in detail some of our work contributing to these areas, but we have also tried
to give a careful overview of other existing approaches.

As a part of our contribution, we have presented multiple cut-off results for verifi-
cation of parameterised networks of processes. In particular, we considered networks of
processes with shared resources available through a possibly prioritised FIFO resource
granting discipline, which is often used in practice. The cut-offs covered linear-time safety
(including mutual exclusion), liveness (and in particular absence of starvation) as well as
deadlockability properties that are the most frequent properties of interest in the given
setting.

Then, we have discussed our proposal of abstract regular model checking combining
regular model checking with the CEGAR approach and allowing regular model checking
to be often performed much more efficiently than using other approaches proposed in the
literature. The method has also been generalised to abstract regular tree model checking
with similar results. We have further proposed a method of regular model checking based
on inference of regular languages from their samples, which guarantees termination for all
the cases when the studied system has a regular state space.

Next, we have described a way how (abstract) regular model checking can be applied
to verification of programs manipulating dynamic singly-linked data structures leading to
a fully automated and quite efficient way of verifying many of their properties. Moreover,
this approach has recently been successfully generalised by using abstract regular tree
model checking to handle even much more general structures, some of which were not
previously handled by a method of a similar degree of automation.

Finally, we have also studied the use of non-regular languages for symbolic automata-
based verification leading to a proposal of a novel class of tree automata with size con-
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straints with an application to verification of programs manipulating balanced tree struc-
tures.

7.2 Future Research Directions

Optimising the Existing Techniques

When we try to summarise the possible future research directions mentioned in the par-
ticular preceding chapters, we obtain that one of the possible general future research
directions is trying to optimise the existing techniques in various ways.

In the domain of cut-offs, the optimisation implies trying to reduce their size in the
cases where they are known not to be optimal. In the case of automata-based symbolic
model checking, one can think of new abstractions and also about more efficient implemen-
tations of the underlying automata libraries and the basic language-theoretic operations
on automata. This implies, e.g., a careful use of the latest BDD technology, heuristics like
guides in guided tree automata in Mona [BKR97], and even looking for novel ways how
to deal with the basic automata operations (checking for emptiness, inclusion, etc.). An
interesting idea is, for instance, trying to deal with non-deterministic automata instead of
deterministic ones, which could allow us to bypass the expensive determinisation step as
proposed recently in [WDHR06].

Of course, optimising the existing techniques is not a problem of cut-offs and automata-
based symbolic model checking only, a similar need can be identified for the other works
targeting automated verification of infinite-state systems too. Many various ways have
been proposed for coping with the state explosion problem in finite-state model checking,
and it is interesting whether similar advances and heuristics can be provided for the
more recent infinite-state approaches too. Here, as a quite promising research direction,
we can mention, e.g., combining the infinite-state approaches with principles of modular
verification. Moreover, an interesting subject is also the area of combining infinite-state
approaches with efficient finite-state ones applied on the finite-state part of states of the
examined systems.

More Specialised Techniques

As a particular direction for optimising the efficiency of the existing techniques, one can
consider development of more specialised techniques exploiting the richer knowledge on the
domain being solved for attaining a better performance. The specialisation may consider
narrower classes of both systems to be verified as well as their properties. The special-
isation can be exploited on different levels starting from the applied abstractions and
symbolic representations down to the underlying low-level representation and operations
such as automata and BDDs. The abstraction can be tuned to deal, e.g., with a certain
shape of dynamic linked data structures common in practice while detecting when this
shape is not preserved (as considered for some cases, e.g., in [BHMV05, LAIS06]) and
giving up in such a situation. As another example we can note that although the worst-
case complexity of the basic operations on automata operations is, of course, known for a
long time, one could try to think of categorising automata according to various criteria,
identifying which classes of automata exist in which domains and trying to optimise the
operations for these classes—such a direction is considered, e.g., in [TV05].

Dealing with More General Systems and/or Properties

Another interesting research direction is in general trying to handle more complex struc-
tures and/or properties than so-far. This includes dealing with systems with more dif-
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ferent sources of infinity as, e.g., various combinations of recursion, unbounded counters,
unbounded concurrency, and/or dynamic data structures. A difficult problem is also han-
dling systems whose states have a complex graph structure like, for instance, various
complex dynamic data structures such as threaded AVL trees (i.e., AVL trees with nodes
linked additionally in the post-order way).

For handling such complex systems, one has to think of appropriate symbolic state
space representation structures (either new ones or combinations and/or extensions of
the existing ones) and of suitable algorithms for handling such representations. In this
context, developing and applying abstractions in a similar way as, e.g., in abstract regular
model checking may become even more crucial than for the currently used representations
as with the rising complexity of the representations, the price of operations on them will
quite likely rise as well.

Next, apart from handling basic safety properties, it is always a challenge to handle live-
ness/termination properties and properties with various quantitative features (balanced-
ness, etc.). In abstract symbolic approaches applied for liveness/termination checking, it
is then, e.g., a challenge how to detect and remove spurious infinite (looping) counterex-
amples which is significantly more difficult than for finite spurious counterexamples in the
case of safety checking.

Model Extraction

Finally, apart from studying various symbolic state space representation structures and al-
gorithms for dealing with them, another challenge is sometimes also how to automatically
build models of systems suitable for verification via such formalisms from the source de-
scription of the systems being checked. Such models can, e.g., have the form of automata
extended with counters, queues, arrays, etc. Techniques like predicate abstraction are
then to be generalised to produce not only finite-state models but such extended models.
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