
Hardware Acceleration
of Graphics and Imaging
Algorithms Using FPGAs
Pavel Zemcik1
1Brno University of Technology

Abstract
Computer graphics algorithms and algorithms used in
image processing are generally computationally
expensive. This fact is the reason why people struggle to
accelerate such algorithms using any reasonable means.
The traditional sources of speedup are faster processors,
parallelism, or dedicated hardware. Development in
digital circuit technology, especially rapid development
of Field Programmable Gate Arrays (FPGA), offers
alternative way to acceleration. Current FPGA chips are
capable of running graphics algorithms at the speed
comparable to dedicated graphics chips. At the same time
they are configurable not only using schematics diagram
but also through high-level programming languages, e.g.
VHDL. The contribution addresses these issues, general
development in the area, and shows examples of
hardware platforms and algorithms that can be
implemented on such platforms.

Keywords: computer graphics, image processing,
FPGA, hardware acceleration

1 Introduction
Computer graphics and image processing are
traditionally the areas with very high demands for
computational power. Such demand is generally a result
of a simple fact that the algorithms that are connected
with images mostly work with large data sets and the
requested processing time is in many cases quite short.

Applications areas that require short processing time
for large image data sets are e.g. all virtual reality
applications, computer games, biomedicine, scientific
visualization, numerical simulation, visual quality
inspection, and many others [1][2].

Historically, the computer graphics systems were at
first built as pure hardware systems. As the computer
technology was making progress, the lower end graphics
systems were gradually changed so that the hardware
was minimised while the tasks that the graphics system
was performing were moved to the general-purpose
processors. At the same time the higher end systems
were built with single purpose “graphics accelerators”.

Today the graphics accelerators – single purpose
engines capable of rendering triangles/polygons at very

1 zemcik@fit.vutbr.cz

high speed – are present even in the lowest end desktop
and notebook personal computers (PC) and they are
starting to be present in pocket PCs and also in the
portable devices, such as mobile telephones. The high
performance systems that are being built today achieve
the high performance using parallelism in addition to the
speedup achieved by better architectures of the graphics
subsystems and clock speedup.

While it is nice that the application developers can
rely on the presence of accelerated graphics engines in
the computers, it is quite unfortunate from the point of
view of graphics and imaging algorithms research that
the function of the graphics accelerators is usually quite
strictly limited to rendering of planar triangles/polygons
and limited choice of shading and texture algorithms and
it is usually impossible to use them for implementation of
any other algorithms. At the same time the real research
of such high-performance graphics subsystems is being
done by the manufacturers of the graphics subsystems
and by the affiliated institutions, such as research
laboratories and universities.

The above mentioned status of the computer graphics
development is unpleasant specifically from the view
point of the East European universities and also
European universities and research institutions in general
as the European region is not quite rich in companies
designing or manufacturing graphics hardware but it
traditionally does have strong research.

A reasonable way forward was offered by the recent
development of Field Programmable Gate Arrays
(FPGAs). Current technological progress [3][4][5] allows
implementation of even very complex devices in the
programmable logic devices and achieve good results
even with architectures and algorithms that are not
supported by the traditional computer graphics
manufacturers.

In many cases it is reasonable to combine the FPGA
design with a unit with a controller that is capable of
executing non-critical but algorithmically complex tasks.
Digital signal processors (DSPs) are suitable devices for
this task [6][7].

2 Methods
The architectures of the hardware accelerated computer
graphics applications can be seen from several points of
view, e.g.:

• Algorithm implementation
• Data distribution
• Load distribution

Various experiments have been carried out and published
by various authors with various focus on the above
classification [8][9][10][11]. The load and data
distribution issues are common for hardware acceleration
units and general parallel processing while the algorithm
implementation point of view is unique for the hardware
acceleration units.

The algorithms that cannot benefit from the
“traditional” graphics acceleration engines are those that
would benefit the most from other forms of hardware
acceleration. The most frequently mentioned ones are:
• Volume rendering. The well known application
for volume rendering is visualisation of medical data
(CT/NMR) data or other 3D data obtained through 3D
scanning. Currently, the medical data is visualised
directly through ray casting of the volume (represented
usually by raster or octree) or converted in surface
representation (e.g. using marching cubes algorithm) and
then displayed through the available graphics hardware.
The direct method is slow in rendering, the conversion is
slow itself – volume rendering generally remains
difficult.
• Ray tracing. Ray tracing is usually not used in
interactive applications but rather for pre-processing,
video/film production, high-quality presentation
rendering, etc. Regardless of the scene representation,
ray tracing is quite demanding method and only few
possibilities to accelerate it exist, the principal being
subdivision of graphics scenes into subspaces and then
tracing the subdivided scene. Ray tracing is very similar
in implementation to particle tracing, or backward ray
tracing – the methods that are even more computationally
demanding but have better rendering features.

3 Technology
FPGAs have been designed as one of the types of the
configurable logic devices suitable for the most complex
designs. The structure of the FPGA consists of two maor
parts. The Configurable logic blocks (CLBs) and the
Programmable Switching Matrix (PSM). See Figures 3.1.
and 3.2 for the schematics of the FPGA structure.

Figure 3.1: FPGA configurable logic blocks

Since FPGAs (Field-Programmable Gate Arrays) were
invented they have created many new opportunities.
FPGAs capable of being quickly configured at run time
have significant potential for improved performance and
resource usage for various applications comparing to
applications specific chips and also comparing to general

processors. In addition, FPGAs capable of partial
reconfiguration allow for the reconfiguration of a portion
of the FPGA while the remainder of the application is
running. Partial reconfiguration is the ability of certain
FPGAs to reconfigure only selected portions of their
programmable hardware while other portions continue to
operate undisturbed.

Figure 3.2: FPGA overall structure

The authors of this project consider Xilinx Virtex

[4][5] the best currently available FPGAs on the market
from the view point of suitability for computer graphics
applications. Their architecture is similar to the Spartan
[3] series (previously widely used series). With densities
ranging from 40,000 up to 10 million system gates, the
Virtex series solution delivers enhanced system memory
and ultra-fast DSP through a flexible IP fabric.
Additionally, significant new capabilities address
system-level design issues including flexible system
interfaces with complex system clock management.

Xilinx Virtex FPGAs fully addresses all aspects of
system connectivity in high-performance designs.
System connectivity consists of the physical interface
and the protocols required to offer higher bandwidth. The
FPGA technology provides the fastest and most flexible
electrical interfaces available. Each user I/O pin is
individually programmable for any of the 19 single-
ended I/O standards or six differential I/O standards. This
technology delivers 840 Mbps LVDS performance using
dedicated Double Data Rate (DDR) registers.

The new series of Virtex devices contain up to 12
Digital Clock Managers (DCMs) Each DCM provides
phase shifting and frequency synthesis capabilities,
which are ideally suited for systems with multiple clock
domains and critical timing requirements. The DCM
delivers unsurpassed flexibility for managing both on-
chip and off-chip clock synchronisation. Each Virtex
device has 16 pre-engineered clock domains to support
the multiple frequency and multiple phase requirements
of complex system designs. Each built-in, low-skew
clock network eliminates complex clock tree analysis and
simplifies the system design process.

DSP
(TI 320C32)

FPGA
(Xilinx Spartan)

SRAM
(2 MByte, 32bit)

Host or peer link

DSP FPGA

RAM

DMA1

DMA2

RIN

ROUT

Buffer
system

Processing unit 1

Processing unit 2

Processing unit 3

I/O subsystem

The high density on-chip memory in the Virtex
solution increases overall system bandwidth by providing
fast and resource efficient FIFO buffers, shift registers,
and CAM. The distributed RAM, block RAM, and high-
speed memory interfaces, provide a powerful memory-
based data-path solutions for bandwidth intensive
systems. The Virtex solution provides industry’s highest
memory to logic ratio with up to 3.5Mb of on-chip block
RAM and delivers over 400Mbps DDR/QDR external
memory interface performance.

The Virtex chips can deliver over 600 Billion
MACs/s of performance. Up to 192 18 x 18 multipliers in
a single device can be implemented. The multipliers can
be fully combinatorial running between 140 and 250
MHz depending on bit width. Designers can use Virtex
devices to implement computationally critical digital
system elements such as sub-1-microsecond 1024 point
FFTs, ultra-fast filters, etc. The Virtex series FPGAs are
also accompanied by a suite of sophisticated design and
simulation tools that support the industry’s fastest
runtimes and the most advanced design methodologies.

4 Experiments
At Faculty of Information Technology, Brno

University of Technology, we are carrying out
experiments with hardware accelerated graphics and
image processing. Our experiments include simulation of
image processing algorithms, simulations of graphics
algorithms, and implementations of the accelerated
algorithms. We have so far implemented two designs and
one new design is under development. All of the designs
are intended for real applications as well as research.

The general design goal of all of the systems was to
develop modules that would be capable of high
performance operation independently of the host PC or
connected to a host PC. Important design goal was also
to maximize the performance/price ratio rather than

achieve the maximum possible performance at any price.
Other goal was to make the modules scalable in that
sense that it would be possible to interconnect them
through high-capacity communication links. All of the
designs do contain flash permanent memory and
communication devices, that are not that important for
the actual operation of the modules and therefore they are
not indicated in the schematics, but they have a critical
role in starting the systems.

In the first of our designs – Xilinx Spartan and Texas
Instruments TMS320C32 (60MIPS floating point) DSP –
we were testing the basic ideas of the FPGA and DSP
co-operation. The FPGA in this design served as
input/output module for the DSP and also as a processing
unit for the bulk data. Due to limitations in
computational speed and memory, the module was only
used for image processing applications [13][14][15] and
2D and wireframe graphics. The design was finished in
1997 (see Figure 4.1).

Figure 4.1: Design with C32 and Spartan FPGA

Figure 4.2: Raster processing using the DSP and FPGA

FPGA
(Xilinx Virtex)

SRAM (local)
(1 MByte, 8bit)

DSP
(TI 320C6711)
256kB SRAM

SDRAM
(64 MByte, 32bit)

Host link Peer links (LVDS)

The design does have some limitations that were forced
in the design because the design goal was to achieve the
best possible performance/price ratio rather than the best
possible performance. Specifically we decided (based on
results of simulations of raster data processing) to leave
the memory access purely on the DSP (its DMA
controllers). This decision does not have adverse effect
on performance but limits the class of algorithms that can
be run efficiently to those that use the data in fixed order.
The system is capable of running raster algorithms with
significant speedup over the pure DSP systems. The
typical way to use the system is shown in Figure 4.2.

The data is typically fetched from the memory
(RAM) using the DMA1 controller built in the DSP chip
and stored in the input register (RIN), then it is run
through the buffer system and delivered in a processing
unit. The results of the algorithms are transferred back to
he output register (ROUT) and then transferred using the
second controller (DMA2) back to the memory. When
the algorithm is applied on all of the data, an interrupt is
issued to the processor (DSP). The processor then
handles further processing. The operation does not
interfere with the processor function except they possibly
compete for the memory bandwidth if the processor
needs to access external memory (but for the optimal
performance the system can be tuned so that only internal
memory is used during the transfers.

Figure 4.3: Photographs of the C32 module

The processing unit (or possibly set of units) in the
FPGA implements the actual imaging algorithms,
typically 3x3 convolution filter with fixed coefficients,
morphological filters, single pixel functions, etc. The
typical speedup of the system over the traditional
implementation in the processor obviously depends on
the algorithm implemented, but generally it is at least
20:1 for 3x3 window functions. The photograph of the
system is shown in Figure 4.3.

An example of the processing speed of the system is
the speed achieved for 3x3 convolution filtering – the
system is capable of filtering around 5 milion pixels per
second – the speed suitable for processing of the B/W
video signal in real time.

The current generation of the designs uses the Xilinx
Virtex FPGA and Texas Instruments TMS320C6711
(1000MIPS floating point) DSP. The design goal of the
system was to develop a system capable of the high
performance 3D graphics acceleration [16][17] and
image processing [18][19][20].

The main advantages over the previous design is that
the new design contains a DSP closer in performance
with the PCs, significantly better FPGA, more memory,
and that the FPGA can have a small local memory. The
main effect of the new design on applications, however,
is that the new design supports dynamic reconfiguration
of the portions of the FPGA so that the FPGA can swap
configurations in the real time (and thus maximize the
exploitation of the FPGA circuits). The local memory
connected to the FPGA allows for local storage of the
intermediate results or constant tables, microcode, etc.
The block diagram of the system is shown in Figure 4.4.

Figure 4.4: Design with C6711 and Virtex FPGA

The design with C6711 was finished in 2001 and
currently we are developing the software support tools
for the module. The software is based on the Texas
Instruments DSP/BIOS multithreading core and channel-

FPGA
Virtex II Pro
PowerPC Core

SDRAM
(1 GByte, 64bit)

CAM - associative
(1 MByte, 128bit)

SRAM (2 blocks)
(4 MByte, 32bit)

Host or peer link (LVDS or Rocket I/O)

PCI

based communication subsystem for data exchange and
synchronization between the threads and modules.

Connection of the module to the PC is planned
through the PCI motherboard (currently being
manufactured) that will also contain bulk memory shared
by the Xilinx Virtex-E FPGA and the DSP module. The
board provides a fast interface between the PC and one
or more DSP modules connected to the board directly or
through the LVDS links. The memory is intended
primarily as the data buffer (see Figure 4.5).

Figure 4.5: PCI motherboard design

The raster processing principle described earlier can

also be applied on this design. The changes in the design,
however, have significant impact on the performance and
efficiency for several reasons:

• The DSP has much more internal memory so the
DSP and DMA are less likely to compete for the
memory.

• The processing units are reconfigurable, so the
FPGA can be used more efficiently and more
specialised functions can be afforded.

• The DSP has more DMA controllers, the memory
bandwidth is faster, and supports multithreading
so the operation of the FPGA processing units can
be overlapped.

The system, however, can be used also in a more general
way as the limitation of memory access done only
through the DSP does not apply and the FPGA can fully
address the memory. We have experimented with
simulation/implementation of several algorithms.
Generally the results were good and showed that the
performance of the new module is better than the old
one, as expected; however, some bottlenecks connected
specifically with the memory bandwidth were found in
algorithms that work with 3D volume data and lead in a
new design that is being prepared.

Figure 4.6: Future design - Virtex II Pro FPGA and CAM

The prepared new design that is now under development
is specifically being prepared to overcome bottlenecks
specifically in 3D volume data rendering.

Such bottlenecks were found in two cases:
• In volume rendering based on object order the

bottleneck was found in image retrieval and
storage – in such methods the temporary image
frame must be retrieved and stored at least once
per voxel slice and can be solved by adding two
image buffers in the design.

• In ray tracing or ray casting the bottleneck was in
searching for the rays whose processing was
postponed for various reasons – the problem can
be overcome by adding a small associative
memory in the design.

An example of object order based volume rendering is
shown in the figure 4.7. The volume dat is fetched from
the SDRAM and put in the gradient/normal vector
estimator along with the buffered content of the previous
volume data slices (stored partially in the on-FPGA
buffers and partially in the frame buffers). After the
gradient is estimated, it is decided whether the part of the
volume is visible or not. If it is visible, it must be shaded
using the shading unit. In parallel, the previous
temporary image frame is fetched from the frame buffer
and merged with the results of the shading unit. After a
slice of data is processed, the frame buffers are swapped.
Finally, the results are passed to the host PC through the
PCI interface.

FPGA SDRAM
(Volume data)

SRAM
(Frame buffer)

PCI

Interpolation
(bi-linear)

Image merging

Gradient/normal
estimation

Buffers

Opacity/shading

FPGA SDRAM
(Volume data)

SRAM
(Frame buffer)

PCI
SRAM
(Ray cache data)

CAM
(Ray cache index)

Coherent ray
generator

3D line engines
gradient/normal

Pixel shader

Secondary ray
handler
(optional)

Ray
cache

Voxel cache

Active ray
manager

FPGA SDRAM
(Volume data)

SRAM
(Frame buffer)

PCI

SRAM
(Frame buffer)

Interpolation
(bi-linear)

Interpolation
(bi-linear)

Gradient/normal
estimation

Buffers

FPGA SDRAM
(Volume data)

SRAM
(Frame buffer)

PCI

Interpolation
(bi-linear)

Image merging

Gradient/normal
estimation

Buffers

Opacity/shading

The frame buffers are
swapped on each voxel slice

Figure 4.7: Object order based volume rendering

The ray tracing/ray casting implementation in the new
design is shown in the figure 4.8. The primary rays are
generated in the ray generation engine (Implemented in
the Power PC core) and processed by a set of 3D line
generation engines combined with the gradient
estimators. (So far, the design is only simulated, but it is
estimated, that 16 such engines will fit in the FPGA used
on the board). These engines fetch data from the voxel
cache implemented on-chip in the FPGA. As the rays are
shot in a very similar direction, a high probability exists
that all the ray engines will need very similar data. When

an object hit/suitable gradient is found, the data is passed
to the pixel shader unit and then stored in the frame
buffer. In some cases, the assumption that the volume
memory content needed by the rays is similar fails. In
such cases, the rays that violate the assumption are not
processed but they are put in the ray cache for further
processing, on the other hand, the ray cache is constantly
searched for the rays that require the content of the
memory that is currently present in the voxel cache and if
a hit is found, the rays are fetched back in the engines.

Figure 4.8: Ray casting/ray tracing of volume data

5 Conclusion
The hardware accelerated architectures for computer
graphics and image processing are one of the promising
approaches in computer graphics. The FPGA circuits
offer a reasonable way to allow experiments to the
people who are not connected to the chip manufacturers.

The experiments we have carried out show that even
relatively simple designs can hep speed-up processing in
computer graphics and image processing and that more
complex designs can be used as co-processors for the
PCs (or other graphic workstation architectures).

Acknowledgements
I would like to thank for the support to my colleagues,
especially Otto Fucik, who is responsible for the
hardware design of the boards and to CAMEA (ltd.) who
supplied the material for the experimental work.

I would also like to thank the organisers of SCCG
2002 for the opportunity to prepare this contribution.

The work has been supported by grant of the Grant
Agency of the Czech Republic (GAÈR) GA102/02/0507
“Computer Graphics Algorithms with FPGA Support”.

References
[1] Watt A.: 3D Computer Graphics, Addison-Wesley,

Wokingham, UK, 1993

[2] B. Jahne, H. Haussecker, P. Geissler: Handbook of
Computer Vision and Applications, Academic Press,
San Diego, CA, USA, 1999

[3] Spartan and Spartan-XL Families Field
Programmable Gate Arrays, Xilinx, DS060 (v1.6)
USA, September 19, 2001, (available at
http://www.xilinx.com)

[4] Virtex™ 2.5 V Field Programmable Gate Arrays,
Xilinx, DS003-1 (v2.5), USA, April 2, 2001,
(available at http://www.xilinx.com)

[5] Virtex-II Pro™ Platform FPGAs: Introduction and
Overview, Xilinx, DS083-1 (v1.0), USA, January
31, 2002 (available at http://www.xilinx.com)

[6] TMS320C32 Digital Signal Processor, Texas
Instruments, SPRS027C, USA, September 2001,
(available at http://www.ti.com)

[7] TMS3B0C6711, TMS320C6711B Floating point
Digital Signal Processors, Texas Instruments,
SPRS088B, USA, September 2001, (available at
http://www.ti.com)

[8] A, Kaufman, R. Bakalash: Memory and Processing
Architecture for 3D Voxel-based Imagery, IEEE

Computer Graphics and Applications, vol. 8, no. 6,
p. 10-23, USA, Nevember 1988

[9] S. Juskiw, N. Durdle, V. Raso, D. Hill: Interactive
Rendering of Volumetric Data Sets, Computer and
Graphics, vol. 19, no. 5, p. 685-693, 1995

[10] I. Bittner, A. Kaufman: A Ray-Slice-Sweep Volume
rendering Engine, In Proceedings of the
Siggraph/Eurographics Workshop on Graphics
Hardware, pages 121-138, USA, August 1997

[11] R. Harvey, H. Pfister, D. Silver, T. A. Cook: Ray
Casting Architectures for Volume Visualization,
IEEE Transactions on Visualization and Computer
Graphics, vol. 5, no. 3, USA, July-September 1999

[12] F. Dachille, A. Kaufman: GI-Cube: An Architecture
for Volumetric Global Illumination and Rendering,
In Proceedings of the SIGGRAPH / Eurographics
Workshop on Graphics Hardware. P. 119-128,
August 2000

[13] P. Zemcik O. Fucik, J. Honec, P. Valenta: Cost
Efficient Image Digitising and Processing Using
FPGAs, In Proceedings Microcomputer'94, p. 225-
229, Zakopane, Poland, 1994

[14] O. Fucik, P. Zemcik, R. M. Fors, D. Loker, R.
Weissbach: A Flexible DSP Hardware Platform for
LVDT Signal Conditioning, In Proceedings of
Electromotion International Symposium, p. 8,
Bologna, Italy, 2001

[15] P. Zemcik, O. Fucik, M. Richter, P. Valenta:
Imaging Algorithm Speedup Using Co-Design, In
Summaries Volume Process Control 01, p. 96-97,
Strbske Pleso, Slovakia, 2001

[16] P. Zemcik: An efficient algorithm for 3D line
generation, In Machine Graphics and Vision, vol. 2,
no. 3, p. 231-235, Poland 1993

[17] P. Zemcik, A. G. Chalmers: Optimised CSG Tree
Evaluation for Space Subdivision, Computer
Graphics Forum, p. 139-146, Netherlands, 1995

[18] P. Zemcik, P. Valenta, O. Fucik, J. Honec. M.
Richter: Visual Analysis on the Production Line, In
Proceedings of The 10th Scandinavian Conference
on Image Analysis, Lappeenranta, Finland, 1997

[19] A. Kaarna, P. Zemcik, H. Kalviainen, J. Parkkinen:
Compression of Multispectral Remote Sensing
Images Using Clustering and Spectral Reduction,
IEEE Transactions on Geoscience and Remote
Sensing, p. 1073-1082, Piscataway, NJ, USA, 2000

[20] A. Herout, P. Zemcik: Raster Volume Data
Graphics Library, In Proceedings ASIS 2001, p. 15,
Brno, MARQ, Czech Republic, 2001

