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Abstract 
Computer graphics algorithms and algorithms used in 
image processing are generally computationally 
expensive. This fact is the reason why people struggle to 
accelerate such algorithms using any reasonable means. 
The traditional sources of speedup are faster processors, 
parallelism, or dedicated hardware. Development in 
digital circuit technology, especially rapid development 
of Field Programmable Gate Arrays (FPGA), offers 
alternative way to acceleration. Current FPGA chips are 
capable of running graphics algorithms at the speed 
comparable to dedicated graphics chips. At the same time 
they are configurable not only using schematics diagram 
but also through high-level programming languages, e.g. 
VHDL. The contribution addresses these issues, general 
development in the area, and shows examples of 
hardware platforms and algorithms that can be 
implemented on such platforms. 
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1 Introduction 
Computer graphics and image processing are 
traditionally the areas with very high demands for 
computational power. Such demand is generally a result 
of a simple fact that the algorithms that are connected 
with images mostly work with large data sets and the 
requested processing time is in many cases quite short. 

Applications areas that require short processing time 
for large image data sets are e.g. all virtual reality 
applications, computer games, biomedicine, scientific 
visualization, numerical simulation, visual quality 
inspection, and many others [1][2]. 

Historically, the computer graphics systems were at 
first built as pure hardware systems. As the computer 
technology was making progress, the lower end graphics 
systems were gradually changed so that the hardware 
was minimised while the tasks that the graphics system 
was performing were moved to the general-purpose 
processors. At the same time the higher end systems 
were built with single purpose “graphics accelerators”. 

Today the graphics accelerators – single purpose 
engines capable of rendering triangles/polygons at very 
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high speed – are present even in the lowest end desktop 
and notebook personal computers (PC) and they are 
starting to be present in pocket PCs and also in the 
portable devices, such as mobile telephones. The high 
performance systems that are being built today achieve 
the high performance using parallelism in addition to the 
speedup achieved by better architectures of the graphics 
subsystems and clock speedup. 

While it is nice that the application developers can 
rely on the presence of accelerated graphics engines in 
the computers, it is quite unfortunate from the point of 
view of graphics and imaging algorithms research that 
the function of the graphics accelerators is usually quite 
strictly limited to rendering of planar triangles/polygons 
and limited choice of shading and texture algorithms and 
it is usually impossible to use them for implementation of 
any other algorithms. At the same time the real research 
of such high-performance graphics subsystems is being 
done by the manufacturers of the graphics subsystems 
and by the affiliated institutions, such as research 
laboratories and universities. 

The above mentioned status of the computer graphics 
development is unpleasant specifically from the view 
point of the East European universities and also 
European universities and research institutions in general 
as the European region is not quite rich in companies 
designing or manufacturing graphics hardware but it 
traditionally does have strong research. 

A reasonable way forward was offered by the recent 
development of Field Programmable Gate Arrays 
(FPGAs). Current technological progress [3][4][5] allows 
implementation of even very complex devices in the 
programmable logic devices and achieve good results 
even with architectures and algorithms that are not 
supported by the traditional computer graphics 
manufacturers. 

In many cases it is reasonable to combine the FPGA 
design with a unit with a controller that is capable of 
executing non-critical but algorithmically complex tasks. 
Digital signal processors (DSPs) are suitable devices for 
this task [6][7]. 

2 Methods 
The architectures of the hardware accelerated computer 
graphics applications can be seen from several points of 
view, e.g.: 
 

• Algorithm implementation 
• Data distribution 
• Load distribution 

 
Various experiments have been carried out and published 
by various authors with various focus on the above 
classification [8][9][10][11]. The load and data 
distribution issues are common for hardware acceleration 
units and general parallel processing while the algorithm 
implementation point of view is unique for the hardware 
acceleration units. 



The algorithms that cannot benefit from the 
“traditional” graphics acceleration engines are those that 
would benefit the most from other forms of hardware 
acceleration. The most frequently mentioned ones are: 
• Volume rendering. The well known application 
for volume rendering is visualisation of medical data 
(CT/NMR) data or other 3D data obtained through 3D 
scanning. Currently, the medical data is visualised 
directly through ray casting of the volume (represented 
usually by raster or octree) or converted in surface 
representation (e.g. using marching cubes algorithm) and 
then displayed through the available graphics hardware. 
The direct method is slow in rendering, the conversion is 
slow itself – volume rendering generally remains 
difficult. 
• Ray tracing. Ray tracing is usually not used in 
interactive applications but rather for pre-processing, 
video/film production, high-quality presentation 
rendering, etc. Regardless of the scene representation, 
ray tracing is quite demanding method and only few 
possibilities to accelerate it exist, the principal being 
subdivision of graphics scenes into subspaces and then 
tracing the subdivided scene. Ray tracing is very similar 
in implementation to particle tracing, or backward ray 
tracing – the methods that are even more computationally 
demanding but have better rendering features. 
 

3 Technology 
FPGAs have been designed as one of the types of the 
configurable logic devices suitable for the most complex 
designs. The structure of the FPGA consists of two maor 
parts. The Configurable logic blocks (CLBs) and the 
Programmable Switching Matrix (PSM). See Figures 3.1. 
and 3.2 for the schematics of the FPGA structure. 
 

 
Figure 3.1: FPGA configurable logic blocks 

 
Since FPGAs (Field-Programmable Gate Arrays) were 
invented they have created many new opportunities. 
FPGAs capable of being quickly configured at run time 
have significant potential for improved performance and 
resource usage for various applications comparing to 
applications specific chips and also comparing to general 

processors. In addition, FPGAs capable of partial 
reconfiguration allow for the reconfiguration of a portion 
of the FPGA while the remainder of the application is 
running. Partial reconfiguration is the ability of certain 
FPGAs to reconfigure only selected portions of their 
programmable hardware while other portions continue to 
operate undisturbed.  
 

 
Figure 3.2: FPGA overall structure 

 
The authors of this project consider Xilinx Virtex 

[4][5] the best currently available FPGAs on the market 
from the view point of suitability for computer graphics 
applications. Their architecture is similar to the Spartan 
[3] series (previously widely used series). With densities 
ranging from 40,000 up to 10 million system gates, the 
Virtex series solution delivers enhanced system memory 
and ultra-fast DSP through a flexible IP fabric. 
Additionally, significant new capabilities address 
system-level design issues including flexible system 
interfaces with complex system clock management. 

Xilinx Virtex FPGAs fully addresses all aspects of 
system connectivity in high-performance designs. 
System connectivity consists of the physical interface 
and the protocols required to offer higher bandwidth. The 
FPGA technology provides the fastest and most flexible 
electrical interfaces available. Each user I/O pin is 
individually programmable for any of the 19 single-
ended I/O standards or six differential I/O standards. This 
technology delivers 840 Mbps LVDS performance using 
dedicated Double Data Rate (DDR) registers. 

The new series of Virtex devices contain up to 12 
Digital Clock Managers (DCMs) Each DCM provides 
phase shifting and frequency synthesis capabilities, 
which are ideally suited for systems with multiple clock 
domains and critical timing requirements. The DCM 
delivers unsurpassed flexibility for managing both on-
chip and off-chip clock synchronisation. Each Virtex 
device has 16 pre-engineered clock domains to support 
the multiple frequency and multiple phase requirements 
of complex system designs. Each built-in, low-skew 
clock network eliminates complex clock tree analysis and 
simplifies the system design process. 
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The high density on-chip memory in the Virtex 
solution increases overall system bandwidth by providing 
fast and resource efficient FIFO buffers, shift registers, 
and CAM. The distributed RAM, block RAM, and high-
speed memory interfaces, provide a powerful memory-
based data-path solutions for bandwidth intensive 
systems. The Virtex solution provides industry’s highest 
memory to logic ratio with up to 3.5Mb of on-chip block 
RAM and delivers over 400Mbps DDR/QDR external 
memory interface performance. 

The Virtex chips can deliver over 600 Billion 
MACs/s of performance. Up to 192 18 x 18 multipliers in 
a single device can be implemented. The multipliers can 
be fully combinatorial running between 140 and 250 
MHz depending on bit width. Designers can use Virtex 
devices to implement computationally critical digital 
system elements such as sub-1-microsecond 1024 point 
FFTs, ultra-fast filters, etc. The Virtex series FPGAs are 
also accompanied by a suite of sophisticated design and 
simulation tools that support the industry’s fastest 
runtimes and the most advanced design methodologies. 

4 Experiments 
At Faculty of Information Technology, Brno 

University of Technology, we are carrying out 
experiments with hardware accelerated graphics and 
image processing. Our experiments include simulation of 
image processing algorithms, simulations of graphics 
algorithms, and implementations of the accelerated 
algorithms. We have so far implemented two designs and 
one new design is under development. All of the designs 
are intended for real applications as well as research. 

The general design goal of all of the systems was to 
develop modules that would be capable of high 
performance operation independently of the host PC or 
connected to a host PC. Important design goal was also 
to maximize the performance/price ratio rather than 

achieve the maximum possible performance at any price. 
Other goal was to make the modules scalable in that 
sense that it would be possible to interconnect them 
through high-capacity communication links. All of the 
designs do contain flash permanent memory and 
communication devices, that are not that important for 
the actual operation of the modules and therefore they are 
not indicated in the schematics, but they have a critical 
role in starting the systems. 

In the first of our designs – Xilinx Spartan and Texas 
Instruments TMS320C32 (60MIPS floating point) DSP – 
we were testing the basic ideas of the FPGA and DSP 
co-operation. The FPGA in this design served as 
input/output module for the DSP and also as a processing 
unit for the bulk data. Due to limitations in 
computational speed and memory, the module was only 
used for image processing applications [13][14][15] and 
2D and wireframe graphics. The design was finished in 
1997 (see Figure 4.1). 
 
 

Figure 4.1: Design with C32 and Spartan FPGA 
 

 

Figure 4.2: Raster processing using the DSP and FPGA 
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The design does have some limitations that were forced 
in the design because the design goal was to achieve the 
best possible performance/price ratio rather than the best 
possible performance. Specifically we decided (based on 
results of simulations of raster data processing) to leave 
the memory access purely on the DSP (its DMA 
controllers). This decision does not have adverse effect 
on performance but limits the class of algorithms that can 
be run efficiently to those that use the data in fixed order. 
The system is capable of running raster algorithms with 
significant speedup over the pure DSP systems. The 
typical way to use the system is shown in Figure 4.2. 

The data is typically fetched from the memory 
(RAM) using the DMA1 controller built in the DSP chip 
and stored in the input register (RIN), then it is run 
through the buffer system and delivered in a processing 
unit. The results of the algorithms are transferred back to 
he output register (ROUT) and then transferred using the 
second controller (DMA2) back to the memory. When 
the algorithm is applied on all of the data, an interrupt is 
issued to the processor (DSP). The processor then 
handles further processing. The operation does not 
interfere with the processor function except they possibly 
compete for the memory bandwidth if the processor 
needs to access external memory (but for the optimal 
performance the system can be tuned so that only internal 
memory is used during the transfers. 

 

 

 
Figure 4.3: Photographs of the C32 module 

The processing unit (or possibly set of units) in the 
FPGA implements the actual imaging algorithms, 
typically 3x3 convolution filter with fixed coefficients, 
morphological filters, single pixel functions, etc. The 
typical speedup of the system over the traditional 
implementation in the processor obviously depends on 
the algorithm implemented, but generally it is at least 
20:1 for 3x3 window functions. The photograph of the 
system is shown in Figure 4.3. 

An example of the processing speed of the system is 
the speed achieved for 3x3 convolution filtering – the 
system is capable of filtering around 5 milion pixels per 
second – the speed suitable for processing of the B/W 
video signal in real time. 

The current generation of the designs uses the Xilinx 
Virtex FPGA and Texas Instruments TMS320C6711 
(1000MIPS floating point) DSP. The design goal of the 
system was to develop a system capable of the high 
performance 3D graphics acceleration [16][17] and 
image processing [18][19][20]. 

The main advantages over the previous design is that 
the new design contains a DSP closer in performance 
with the PCs, significantly better FPGA, more memory, 
and that the FPGA can have a small local memory. The 
main effect of the new design on applications, however, 
is that the new design supports dynamic reconfiguration 
of the portions of the FPGA so that the FPGA can swap 
configurations in the real time (and thus maximize the 
exploitation of the FPGA circuits). The local memory 
connected to the FPGA allows for local storage of the 
intermediate results or constant tables, microcode, etc. 
The block diagram of the system is shown in Figure 4.4. 
 
 

Figure 4.4: Design with C6711 and Virtex FPGA 
 
The design with C6711 was finished in 2001 and 
currently we are developing the software support tools 
for the module. The software is based on the Texas 
Instruments DSP/BIOS multithreading core and channel-
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based communication subsystem for data exchange and 
synchronization between the threads and modules. 

Connection of the module to the PC is planned 
through the PCI motherboard (currently being 
manufactured) that will also contain bulk memory shared 
by the Xilinx Virtex-E FPGA and the DSP module. The 
board provides a fast interface between the PC and one 
or more DSP modules connected to the board directly or 
through the LVDS links. The memory is intended 
primarily as the data buffer (see Figure 4.5). 
 
 

 

Figure 4.5: PCI motherboard design  
 
 
The raster processing principle described earlier can 

also be applied on this design. The changes in the design, 
however, have significant impact on the performance and 
efficiency for several reasons: 

• The DSP has much more internal memory so the 
DSP and DMA are less likely to compete for the 
memory. 

• The processing units are reconfigurable, so the 
FPGA can be used more efficiently and more 
specialised functions can be afforded. 

• The DSP has more DMA controllers, the memory 
bandwidth is faster, and supports multithreading 
so the operation of the FPGA processing units can 
be overlapped. 

 
The system, however, can be used also in a more general 
way as the limitation of memory access done only 
through the DSP does not apply and the FPGA can fully 
address the memory. We have experimented with 
simulation/implementation of several algorithms. 
Generally the results were good and showed that the 
performance of the new module is better than the old 
one, as expected; however, some bottlenecks connected 
specifically with the memory bandwidth were found in 
algorithms that work with 3D volume data and lead in a 
new design that is being prepared. 
 

 

Figure 4.6: Future design - Virtex II Pro FPGA and CAM 
 
 
The prepared new design that is now under development 
is specifically being prepared to overcome bottlenecks 
specifically in 3D volume data rendering. 

Such bottlenecks were found in two cases: 
• In volume rendering based on object order the 

bottleneck was found in image retrieval and 
storage – in such methods the temporary image 
frame must be retrieved and stored at least once 
per voxel slice and can be solved by adding two 
image buffers in the design. 

• In ray tracing or ray casting the bottleneck was in 
searching for the rays whose processing was 
postponed for various reasons – the problem can 
be overcome by adding a small associative 
memory in the design. 

 
An example of object order based volume rendering is 
shown in the figure 4.7. The volume dat is fetched from 
the SDRAM and put in the gradient/normal vector 
estimator along with the buffered content of the previous 
volume data slices (stored partially in the on-FPGA 
buffers and partially in the frame buffers). After the 
gradient is estimated, it is decided whether the part of the 
volume is visible or not. If it is visible, it must be shaded 
using the shading unit. In parallel, the previous 
temporary image frame is fetched from the frame buffer 
and merged with the results of the shading unit. After a 
slice of data is processed, the frame buffers are swapped. 
Finally, the results are passed to the host PC through the 
PCI interface. 
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Figure 4.7: Object order based volume rendering 
 
The ray tracing/ray casting implementation in the new 
design is shown in the figure 4.8. The primary rays are 
generated in the ray generation engine (Implemented in 
the Power PC core) and processed by a set of 3D line 
generation engines combined with the gradient 
estimators. (So far, the design is only simulated, but it is 
estimated, that 16 such engines will fit in the FPGA used 
on the board). These engines fetch data from the voxel 
cache implemented on-chip in the FPGA. As the rays are 
shot in a very similar direction, a high probability exists 
that all the ray engines will need very similar data. When 

an object hit/suitable gradient is found, the data is passed 
to the pixel shader unit and then stored in the frame 
buffer. In some cases, the assumption that the volume 
memory content needed by the rays is similar fails. In 
such cases, the rays that violate the assumption are not 
processed but they are put in the ray cache for further 
processing, on the other hand, the ray cache is constantly 
searched for the rays that require the content of the 
memory that is currently present in the voxel cache and if 
a hit is found, the rays are fetched back in the engines. 
 

 

Figure 4.8: Ray casting/ray tracing of volume data 



 

5 Conclusion 
The hardware accelerated architectures for computer 
graphics and image processing are one of the promising 
approaches in computer graphics. The FPGA circuits 
offer a reasonable way to allow experiments to the 
people who are not connected to the chip manufacturers. 

The experiments we have carried out show that even 
relatively simple designs can hep speed-up processing in 
computer graphics and image processing and that more 
complex designs can be used as co-processors for the 
PCs (or other graphic workstation architectures). 
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